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FOLLOWING ARE THE CORRESPONDING RUSSIAN AND ENGLISH

DESIGNATICNS OF THE TRIGONOMETRIC FUNCTIONS

Russian

sin
(LT
tg
ctg
sec
cosac

sh
ch
th
cth
ach
cach

arc sin
arc cos
arc tg
arc ctg
arc sec
arc cosec

arc sh
arc ch
arc th
arc cth
arc sch
arc cach

rot
lg

English

sin
cos
tan
cot
sec
csc

sinh
cosh
tanh
coth
sech
cech

sin-l
cms"l
tan™
cot~L
sec”™
cv;w"l

sinh=l
cosh~1
+anh~1
coth-1
sech~l
esch-1

curl
log
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CHAPTER II

BASES OF THE THEORY OF WAVES IN A NONLINEAR
DISPERSIVE MEDIUM

§ 1. Introduction

In the investigation of wave processes in a nonlinear medium,
the initial system is the system (I. of I) in which the bond between

vectors D and E (material equations) 1s nonlinear. A general solution

of the thus obtained nonlinear system of equations 1s impossible.

At the same time, for the majority of practically interesting
cases, 1t 1s possible to develop an effective method of obtaining

the approximate solutions based on the circumstance that linear losses

in the medium and nonlinear part of the vector of pclarization can

usually be consldered small [see Introduction, formulas (I.1l4)-(I.16)].
We will subsequently denote small values by the dimensiocnless parameter

u(e € 1). Here we will consider the linear losses by the magnitude
of the first order of smallness with respect to u, so that

;(u)mRe?‘z(m)+ipIma(u). (2.1)

Nonlinear terms irn the decomposition of vector of polarization P with
respect to E will ascribe the first and higher order of smallness
with respect to u. It is natural to consider that 1n the quadratic

medium tensors X v W ané 8 v u2 corresponding to the dipole radiation
and tensors of higher ranks have ah order of u3 ete. The lowest

nonlinear term 1s obviously the largest. In the cubic medium the

FTD-MT-24-259-69 1

L4

. > e b e

“or




e

BELE i Mgt a2 ey

" e o A P e i <

T PP Ty Ty
ESk Gl v St S s T B ke
e .t e ot et e+

tensor 3 is the lowest, and therefore here we will consider 6 ~ p.
Equations (I.1) can be converted to one second order equatlon,
whieh in accordance with that mentioned above about the order of
smallness of nonlinear and dissipative terms will be recorded in
the form:

Ty i ! BE | 4x 3PN NE
v ivEl + 5 5+ ST e e 5 =0, (2.2)

where function F includes components of linear polarization connected
with the losses and terms determlned by the nonlinear polarization

of the medium; the part of the vector of linear polarization
determined by Re x is designated by P<")

In a zerc approximation (¢ = 0) equation (2.2) describes the
linear nondissipative medium. Natural waves of such a medium are
monochrom«iic plane waves of constant amplitude; direcctions of
polarizations and wave vecvors of natural waves are determined by
the properties (2.2). For small p it is natural to assume that
waves in a nonlinear dissipative medium differ little from natural

waves of a lii.ear transparent medium. Therefore, if for n = 0
_ I (sopt=k, v
E¢,0=3 Ae' (500 (2.3)

and AOn — constant complex numbers, then for u # 0

, Et.n= g}A',,(pr),‘(mnf—*n ), (2.4)

where complex amplitudes are slowly changing functions of the
radius vector r. Thus, the dependence field strength of the wave
in the nonlinear dissipative medium on r enters in two ways:

a) through the exponential in (2.4). Her= coordinate r is
the "rapid" spatial scale of changes of the field, which are
connected with the "rapid" coordinate, and has an order of q::%}:l;

b) through the complex amplitude An’ Here coordinate r is
"slow," which 1s notel by factor u. The spatial scale of changes
of the field, characterized by the "slow" coordinate, has an order

of azzjt;.relative changes of complex amplitudes in a weakly
LB
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nonlinear, weakly absorbing medium on the wavelength are small é;A"«:L
n

Although the method of designing of approximate solutions of the
type (2.4) proves to be basically similar to the corresponding
method, developed in the throry of nonlinear oscillations of systems
with concentrated constants (see, for example, [53] and [54]), it
1s expedient before passing to nonlinear problems to illustrate
it at first using the simplest example of the linear dissipative
medium. It is necessary to stress that in force what was said in
the introduction and in Chapter I, the greatest interest for the
examined range of questions is in problems on the propagation of
nonlinear waves in anisotropic dispersive media. In optics only
for an anisotropic (uniform or nonuniform) medium is the obtaining
of considerable ratiosﬁ%-‘ possible. Therefore, in this chapter
the following order of consideration of problems about nonlinear
waves 1s accepted. At first certain relationships characterizing
natural waves in an anisotropic nonabsorbing medium (u = 0) are
deduced. Then, in the example of linear dissipative anisotropic
medium a generalization of the method of slowly changing amplitudes
on distributed systems is given; here and subsequently we are
limited, as a rule, by the first approximation, i.e., by the
constructing of solutions satisfying the initial equation (2.2) to
within terns mu2. Finally, the method of slowly changing amplitudes
is used for consideration of a number of model ncnlinear interactions
ir the quadratic and cubic medium. Here one should stress, however,
that although the thus obtained sys:em of truncated equations of
the first order is considerably simpler than the initial equation,
it, for majority of cases does not allow an exact analytic solution.
Therefore, in 5§ 5-6 of this chapter certain possibilities of further
simplification of the problem, already in the stage of consideration
of truncated equations, are examined.

'See also Crapter III, § 2, where specific dispersion charac-
teristics of a number of crystals utilized in nonlinear optics
are examined.
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§ 2, Waves in a Linear Anisotropic
Dispersive Medium

2.1. Zero Approximation (p = 0). Natural Waves
of an Anisotropic Nonabsorbing Medium

The process of propagation of waves in an anisotropic linear
dispersive medium 1s described by the wave equation:

()’ .
2 s 22 afptom] =0, 25

The vector of polarization P(n) is connected with field E by the
linear functional relationship:

"pt =j§(f)£(t—t')dr', (2.6)

A
where x () in the examined case is a tensor with components Ko ®

Let us consider subsequently certain necessary relationships
for plane harmonic waves of constant amplitude:

E = erel(ul—lst)’ (2 LT )

where Ao — constant and e — unit vector. The connection between
the wave vector k and frequency ® can be obtained if one were to
substitute (2.7) inte (2.5). It has the form:

-m'e + 41uo’;\c (w)ye -+
+ ¢t [kike]] =0, (2.8)

where Q@) spectral form 3 (') (see (1.8)). From a consideration of
(2.8) as systems of equations for components of vector e there

follows the condition of compat*bility of the system —~ equality to

zero of the determinant composed of the coefficients with components

of vector e. This relationship, being one of the fundamental equations
of crystal optics, gives at the assigned direction k and assigned
tensor Q two values of the modulus of the wave vector |k; k2|. We
assume that they are not equal each other. Each of these values

of k corresponds to its own system of components e, i.e., the

ﬂ"*’l‘m_ P
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assigned polarization of the "natural" wave. Let us designate the
unit vectors in the direction of the "natural polarizations" by

e; and e,. Vectors [klelj and [k2e2], which have directions of
intensities of magnetic filelds H1’2, are mutually perpendicular,
whereas the very ey and €55 which determine directions E1,2’ are
not perpendicular to one another. At the same time, eigenvectors

of electrical induction DLF=EM+-h&ELg appear mutually perperndicular.

The direction of energy flow of the natural wave is characterized

by the vector [EH] or the beam vectcr collinear with it s:

(&)

g i) (2.9)
o

ak

the modulus of which 1is equal to the value opposite to the group
speed. Eigenvectors D, E, k and s are located in one plane perpen-
dicular to H. Thelr locations for one of the natural waves are
shown in Fig. 2-1. The beam vector obeys the relationship which can

be obtained by multiplying scalarly (2.8) by e and differentiating
the obtained equality with respect to k. We have:

A

A . . /
2‘°¢’+8ﬁmC“¢+4ﬂm’e§:—e=2c’s[e[ke]}. {2.10)

In the derivation of (2.10) there was used the relationship:

o [k [kel] = —2 e [ke]]. (2.10a)

Fig. 2-1. Directions of
vectors in an anisotropic
medium.
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2.2 First Approximation (u # 0); Truncated Equation
for the Absorbing Medium

Let us assume now that the tensor of the linear medium contains
not only the real but also imaginary part so that

S A
Q(m)::;\c“(m)—ip "‘:’) . (2.11)

We will consider that the medium is excited by a wave of the form
(2.7) harmonic in time, and the polarization of the wave excited in
the medium is similar to one of the natural polarizations of the
nondissipative medium; it is required to determined the law of the
change in the overall amplitude of the wave in space. Although the
problem at hand for the linear medium examined at this point can

be solved accurately (and for waves of a more complex form the
solution can be written with the help of the Fourier integral), we
will discuss the method of its approximate solution, which leads

to replacement of the accurate equation (2.2) by an approximate first
order equation for a slowly changing amplitude. As we will be
convinced subsequently, the advantage of such an approach is, first
of all, the possibility of its generalization of the nonlinear
medium; at the same time this approach proves to be efficient in
the solution of linear problems connected with the propagation of
modulated waves (see, for example, Chapter V),

Thus, the presence in equation (2.2) of disturbances “p leads
to distinctions in the solution of the perturbed equation from the
solution corresponding to M = 0 and having the form of a wave of
constant amplitude {2.7) for which %?:?Q With this the solution of
the perturbed equation for u = 0 should, obviously, turn into a
solution of the type (2.7). Having all of this in mind we will
look for the general solution of the perturbed equation in the form
of decomposition (see also [53]):

E =,[Cxl1 ‘(!lr)e_'&'+ BULR) + it Uy (1) + i‘;’ U,.(r) $.- ] o ' (2.12)

where Ul’ U2“' are periodic functions of r, and quantity 4, in
contrast to the case B = 0. 1s no longer constant, and is determined
by the differential equation

W e g
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‘dA

“ =pB (A) 5+ 2By (A)+- - (2.13)

Now the problem is reduced to the determination of functions Ul?

U2, vees Bl’ B,» ..., such that expression (2.12), after substitution
into it of values of 4, determined from (2.13), proved to he the solu-
tion of the initial differential equation (2.2).

The general procedure of finding the indicated functions is
discussed in monogiaph [53] quoted above; one should note, however,
that in practice due to the rapid geowth in calculating difficulties
with an increase in the number of terms of decompositions
(2.12)-(2.13}, it 1is necessary to bz limited to the finding of only
one to two first terms. Therefore, in being limited to m terms
in decompositions ("m-approximation™), it is possible to state
the problem of detecting of the apsroximate solution, i.e., such
functions Ul v Um’ Bl’ ceey Bm, which would allow to obtaining a
solution satistying the initial equation (2.2) to within magnitudes
of the order of um+]. Here deviation of the thus obtalned approximate
solution from the e..act one has an order of um+1r, and, consequently,

can be made very un.all even at quite large », if p is small.

Not discussing; here the speclal mathematical questions connected
with asymptotic properties of the construct solutions (for more
detall on this see monograph {53] and the mathematical work on
the theory of differential equaticns containing a small parameter),
we will pursue the analysis of th- first approximation in the

solution of (2.12), i.e., look for vhe solution of (2.2) correct

to terms mu2:

E = [eA(pr) ™4 p Ur)] (2.14)
' 1‘:":!‘3(’”-' (2.15)

Substituting (2.14) and (2.11) into (2.2), we have for separate
components of the equation correct to terms of the second order
with respect to u:

P = (k@) e A 0™+ prr @) U ) ™ (2.16)
e M . . . ?_‘_9. - -'_. . .
S =B I = utp, (@.21)
7
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[V [VE]] == l_k [ke]] Ae""“'—}- [p[k [VeAl] e-lkr+ :
+ in[v [ked]] ™ —ufv [vU]]} . (2.18)

Using (2.16-(2.18) and considering that quantity [kfke]] can be
determined from (2.8) (e is close in conditicns to the elgenvector),
we obtain:

@y vl —at {1 4 dmet (o) 6 =
= e felvea)] + ¢ [y (kea]] — noved) e, (2:29)

From the last relationship function B(4) and, consequently, the form
of the first order equation, which determine the complex amplitude
A can be simply determined. Actually, the linear differential
operator, which acts on vector U in the Left side of (2.19), has the
elgenvalue -ik, and therefore the right side of (2.19) is a resonance
force for it. At the same time, all functions of Un in (2.12), in
virtue of their determination in the method of successive approxima-
tions, should be limited for arbitrary r. For this it 1is necessary
that the scalar product of the right side of (2.19) on e be equal to
zero. (Polarization of vector U is perpendicular to e).! After
multiplication by e we obtain the ordinary differential f{irst order
equation

e [kel] y A+ eaed =, (2.20)

A A
where tensor g = 2890
3

In the derivation of (2.20) there is used the relation

e[klvel] +ely kel = —2[elke]] v. (2.21)

Equation (2.20) is the sought, sc-called "shortened" equation, which
describes in the first approximation the change in complex amplitude
A in space. Let us note that in the first approximation it is
possible, in general, to be limited to the consideration of only

the truncated equation (2.20), inasmuch as calculation of the term

!This requirement is analogous to the requirement usually used
in the nonlinear theory of oscillations of systems with concentrated
constants, ..e., the requirement of the absence of the {irscv time

harmonics in corresponding scalar functilons Ul’ N Un

et e e

e —

v e -t e =~




wU in (2.14) essentially does not change the results. Actually,
relations (2.14)-(2.15) are written correct to terms wuz; here the
complex amplitude 4, obtained from the thus truncated relations, on
length »r can be deflected frcm the exact value by quantilty muzr.

On the other hand, as was noted above, amplitude 4 can be substantially
changed cnly on intervals erli. Consequently, on the interval 2
errors in the determination of Eomplex amplitudes prove to be of

the order of ~u. Therefore, if we are interested, in the first place
in the flow of transient processes in a nonlinear medium, it is

possible not to consider the addend in (2.14) having an order of .

Let us turn now to an analysis of equation (2.20). Let us
copy i1t in the form:

[e fkel] yA = — eqeA. (2.22)

First of all, let us note that the vector [e[ke]l has direction

of the vector of the energy flow and, consequently, beam vector
s, and its medulus 1is equal to

i[c[k'e}]|=lccoslfs. . (2.23)

where ﬁr designates the angle between vectors k and s. In order to
determine the law of the change in 4 in space, let us select a certain
direction the unit vector along which will be designated by lo, and
the corresponding coordinate tnrough 2. Then the differential
operator G(4), standing in the left side of (2.22), can be convert to

the form: (
o A

G(A):kcosks-coss,}o~%. (2.24)

‘2 Hence it is clear that the main direction of action of the differen-
ﬁ A tial operator G is the direction of the beam vector s. The solutlon .
! of equation (2.22) has the form: ‘
e | .
J ) A =F([sr]) exp [-— (st)] . (2.25) |
5 A :
. where 8=—=2%_ and F is the arbitrary function of argument [sr], '
|sl% cos ks !

on which, in accordance with {(2.24), the operator ¢ does not act

o e
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In tne beoundary value problem, the direction of the change in
amplitude 1s assigned directly conditions of the problem. Actually,
if there is examined the semilimited anisotropic medium, o>nto which
from without falls the monochromatic wave, the direction of the
change in amplitude coincides, obviously, with the normal to the
boundary. Introducing the cartesian coordinates and directing the
axls z along the normal (here there can be any position of the
optical axes with respect to the z axis) the solution of equation
(2.21) can be represented in the form:

A—expl—3—2
, exp{ d —3 }f(x.y). (2.26)

where f(x, y) — certain function determined by the boundary conditions.
Formulas (2.25)-(2.26) give the solution of the problem at hand.

In the problem examined above about the propagation of unmodu-
lated waves is a dissipative medium, the truncated equation (2.21),
equivalent to within u2 to the initial second order equation in
partial derivatives, proves to be an ordinary first order equation,
which is absolutely similar to that which tgkes place in the theory
of systems with concentrated constants (in this meaning we usually
indicate the space-time analogy, see § 6 of this chapter). This
case, of course, is the simplest; in general the presence of two
independent variables in wave problems makes them more diverse than
corresponding problems in the theory of systems with concentrated
constants. The procedure stated above of obtaining shortened
equations can easily be generalized in the ¢~se of modulated waves.
Being limited by frames of the method of slowly changing amplitudes,
we will consider that the changing of complex amplitudes with time
are slow and, consequently, the solution of equation (2.2) can be
sought in the first approximation in the form:

E = eA(, pr)e™ 4 pU(r,1), (2.27)

where U is the periodic function of time and coordinate.

Repeating the procedure used in the derivation of (2.21) (here,
however, in contrast to the case of the unmodulated wave the relation
of the type (2.19) will be multiplied scalarly by eexpi(wi—Kkr),
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we arrive at the partial differential truncated equation of first

order:

. A *
A
{[%e + 8noxt e 4 4n® %— e]‘%’-:— — [k [yeA]]—

~ ¢ [y [ked]] + 4race A] e = 0. (2.28)

The derivative gﬂ in (2.28) appears from expression for P, which
L0
for the modulated wave can be represented in the first approximation
as: ‘
. A . n A » s
P o u(m)e&l(«l—lr)_pe% ¢“"?"")5" # (tl) e-lo! d"-*—
! {u'(t')U(r.t-;')d:' o (@) e A0 _
SR L . ' . .

ELEN [y

w3 AP R - - RN
—ip 2% .. ?5/‘? ity pé‘x!(t'w(r,t_z')dz'.. (2.29)

Replacing in (2.28) the coefficient with %%’with the help of (2.10),
we have finally:
‘ 'aA..' . A
[elkel]s 5 [elke]]vA+eacd=0. (2.30)

The general solution of (2.30) is the product of the solution of
the stationary equation (2.21) on a certain function of the argument
u(t - sr): '

A= Alpr)-flu-(t—s1)). (2.31)
Further we will pu..ue the generalization of truncated equations of
the form (2.21) or (2.30) in the case of a nonlinear medium.
Equation (2.30) proves to be very convenient in the investigation of
modulated waves in linear dispersive media, in particular, in the
investigation of distortions of modulation in a dispersive medium,
where calculations founded on spectral concepts prove to be more
laborious.

§ 3. Interaction of Waves in a Nonlinear
Anisotroplc Media

3.1. Quadratic Medium. Truncated Equations.

As was already indicated in Chapter I, the appearance of a
wave of nonlinear polarization in a quadratlic medium is the result

11
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of the interaction of two waves of the field; in this paragraph,

by the method of slowly changing amplitudes, we investigate the
general regularities of three-frequency interaction in space. Here
for the fullest description of such an interaction, cae should
consider not only the two initial waves of the field but also the
natural wave of the medium on the combination frequency. In accor-
dance with what has been saild let us present field in the nonlinear
medium in the form:

E=E;+Es+ Ey = )4, (ut, pr) '/~
L*' elA’ (M, p.f) el(n.f—kff)_*_ esAa (pj'.' p.l‘) el(w,l-—t.r)+

v . 4 complex conjugate. (2.32)

(Here we will no longer repeat in detail the procedure of
the derivation of the truncated equations, and therefore we will
not write vectors Un v dn (2.32).) In (2.32) vectors e,

characterize the polarizations of the waves, An -~ complex amplitudes,

and kn — wave vectors of natural waves of the medium. Between
frequencies w,, for the examined interaction there takes place the

relation:

OiF 0, = 0. (2.33)

Waves (2.32) in ahe quadratic medium excite pairwise forced
waves of nonlinear polarization on combination frequencies.
Amplitudes of these forced waves have the form:

Pectmi A Ay Poom AN Poo AAL ot

Waves of nonlinear polarization excite corresponding waves cof
the field, and the latter, in turn, new waves of polarization; all
of this determines the interaction of waves El, E2 and E3 in the
quadratic medium. Let us recal’l (see the introduction, formula
{(I.23) and (I.24)) that the thus appearing nonlinear interactions
can lead to stored effects only in the case when wave numbers of
forced waves of nonlinear polarization are close to wave numbers

of natural waves of the meaium on corresnonding combination

frequencies. The condltion of the appearance of stored effects with

12
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three~frequency interactions (it is accepted to call it the "condition

of synchronism") has, obviously, the form

Ky Ky =k (2.34)

Subsequently, we’will consider also small /~pu/ deviations
from the exact condition of synchronism; we will consider that
between wave vectors kn there takes place a r2lationship somewhat
more general than (2.34) of the form:

Kyt Ky =k 4 A, (2.35)

where |Al/k~p..

Let us turn to the derivation of the truncated equations. For
this, just as in § 2, the unknown solution of (2.32) should be
substituted into equation (2.2). Let us note that heve, in contrast
to the linear medium, the vector of polarization P will contain
not only terms of the form (2.29), taken for frequencies Wys Wy
and u, (we will designate them {1}, {2} and {3}), but slso nonlinear
terms determined by the interaction of the waves. Therefore, the
full expression for vectcer P in the quadratic medium, excited by the
three waves, has the following form (in P only components having
frequencies Wy s Wy and wg are increased in value):

= (1] -+ (2) 4 (8) g e Agleirebn 12

+ "‘""‘e,e, As A‘ uw—l»r+m +X eae A sA !(”J—-k.r{:“-) +
’ -+ comp¢ex conjugate. (2.36)

Conducting further computaticns, just as in the preceding

paragraph, and :ollecting terms corresponding to ldentical frequencies,

(for this one should_conduct term~by-term integration with respect
) , we arrive at truncated equations of the form

to periods Ty, = o

" [ [kyeylls, %‘ + (e, [Kye,]lv 4, - (ez':‘x &4, +
. +iﬂ.‘o“ A =0;
[es [kye,]] 3: + leslkye]l vA, 4 (@saz &) Ast
.. +iﬂ0;¢+l.”A3Al='0; (2.37)
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[es:..s8]]s, %i:" 4 [es [kaey}) vA;s + (eaga es)A; +

+ ‘&!’;8-'“.41:42 = 0,
where )

= % (e, 2.'_“' € 8y) = % (c&"‘""e, e) = %(ea'\x"‘“'ele,), (2.38) f
The last equalities take place in virtue of the relationship (1.56).
With an accuracy of muz equuations (2.37) are equivalent to the initial
equation (2.2) for the case of the three-frequency interaction.

When B = 0 equations (2.37) become independent; each of them has

the form of eqguation (2.30) - in this case the medium is linear,

and the principle of superposition acts. Conversely, when B8 # 0

waves of different frequencies interact with each other; the process
of interaction is described the last in (2.37) having an order of

i, As one should have been led to _xpect, the value of these

terms 1s determined not only by the noniinerrity of the medium 8

and amplitudes of interacting waves but also by the iisrersion
properties of the medium, which enter into nonlinear terms through )
exponentials of the form exp (xiAr). Here the maximum nonlinear

interaction takes place, obviously, when Ar=0 (this corresponds,

in particudlar, to tpe fulfiliment of the exact condition of synchronism

(2.34)). At large |A| nonlinear terms prove to be rapidly oscillatory

and therefore cannct essentially change the complex amplitudes

An; waves propagate practically just as they do in a linear medium.

Although equation (2.37) is simpler than the initial nonlinear

equation, even here an analytic soluticn in general 1s not possible

to obtain. We will pursue the analysis further and, where it is

possible, by secondary simplifications of system (2.37); here

we will deduce certain general relationships taking place for the

tnree-frequency interaction of unmodulated waves in a quadratic

medium without losses.

Let us assume that the nonlinear dielectric occuples the
halt-space 2 > 0, and three plane waves of the type (2.32) drop
on it at different angles from the vacuum. Then the complex
amplitudes of the waves, which passed into the dielectric, depend

14
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obviously only on z, and equations (2.37) obtain the form:

E A
k, cosk,\sl-coss‘ zo% + BulettT.C-4, 4, =0; (2.3-a)
A A~ dAy , a0 HIS % . .
kycosk,s,-coss, 2,2 + ioje " -C-A,Ap=0; (2.39b)
k,cospc:sa~coss:ﬁo%‘+ Pl e‘“"-C-AlA2 =0, (2.39c¢)

where By ~ unit vector in the direction of the z axis,

C =exp ({(A;x+ A,y)). (2.46)

From (2.39) and (2.40) there follows, thus, the remarkable
conclusion: the effectiveness of the three-fre:uency interaction,
carried out along the z axis, 1s affected only by z — component
"vector of frequency difference" A and Az.

Multiplying these equations by A/e? AJjol and AYe} and adding
them with complex cor.,ugate expressions, after integration the

following relationships can be obtained, which are correct for the
arbitrary section z

A A A A
ki cos k; 8,-cos $; 2, A A+ ks cos kg 85-c08 83 24
] 1°71

2 A, A7 = const.

| oy
A A A A (2.)".].)
ky cos kg 8;- [ ks 3g°
1 COS |:2cos 12 AlA:-Lk’_cos ’s’zco"’uﬁzr‘l;=const.
1 . .

In order to present (2.41) in a more transparent form, we will
consider that the amplitude of the magnetic field strength # is
expressed by amplitude 4 in the following way:

¢ A
H = —kAcos ks. (2.42)

Then relations (2.41) can be presented in the form

[Elek"o_}_ E:::] '°=const; (e 1] z _ [EHy] %0 const. (2.43)
S e @ .

1
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Subtracting the second relations of (2.43) from the first,

we have: . .
’ IBZHQI z':o_*_ [Es H))

G0

= const. (2.43a)

From (2.43) there follows the law of conservation of energy
flow. Let us multiply the first relation (2.43) by Wy 5 relation
2.43a) by w5 and add the obtained expressions. Considering (2.33)
we will obtain:

[E, 3] 2, + [E,H3] 7, + [E, H z, = const. (2.44)

The last one means that the general energy (low through the areua
element parallel to the boundary does not depend on the coordinate .

3.2. Energy Relationships with Three-Frequency
Interactions in a Quadratic
Medium. Discussion.

The general energy relations (2.41)-(2.44), which characterize
the flow of three-frequency interactions in a quadratic medium,
allow a very graphic quantum interpretation. Actually, in quantum
language, the excitation of harmonics and combination frequencies
should be treated, obviously, as processes of the merging and
daivision of photons. Having this in mind, the relations (2.33)
and (2.34) multiplied by Planck's constant should be interpreted
as laws of the conservation of energy and momentum in an elementary
three-photon interaction. Relations (2.43) mean that the sum of
the number of quanta of frequencies w and w3 and the difference
in the number of quanta of frequencies wy and W5 s which passed
through a unit area element parallel to the border of the dielectric
(in an anisotropic dielectric guanta move along the beam vector),
remain constant. Let us note that in relations (2.32), (2.34) and
(2.43) nonlinear properties of the medlum (in quantum language, they
determine the probability of the merging or division of photons),
in general, do not appear; therefore, these relations act in all
cases when three-photon interactions are solved. Quasl particles
corresponding to the interacting fields shovid not have to be

16
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photons; they can also be phercus, magnons etc. The fulfillment

of relations (2.33), (2.34) and (2.43) will be, of course, obligatory
for them (see also [103]). In connection with what has been said,
there is interest in the consideration of nonlinear interactions

of electromagnetic waves by methods quantum electrodynamics; certailn
results in this direction are contained in [98 and 101].

Finally, relations (2.43) prove to be ar:logous in form (for more
detail on this see § 6 of this chapter) to the well-known concentrated
constants in the theory of nonlinear reactive systems, the so-called
Manley-Rowe relationships [104]. From this point of view it is
possible to examine (2.43) as a generalization of Manley-Rowe
relationships on anisotropic media (for a one-dimensional medium
such a generalization was carried out in [106 and 107]) and the

quantum interpretation (2.43) given above as the quantum treatment
of the relationships of Manley-Rowe.!

Subsequently, in specific problems, we will use widely relation-
ships of Manley-Rowe; here the values of constants in thelr right

sides can be deterinined with the help of boundary conditions charac-
teristic for the given problem.

3.3. On the Interaction of Waves
in a Cubic Medium

We will now exarine the process of the interaction of waves in
an anisotropic dispersive medium, the lowest term in the decomposition
of field polarization for which is the cubic term. The method of
derivation of truncated equations here does not differ from that
examined in 3.1; therefore, being interested, in the first place,
only in qualitative effects distinguishing the cubi.. medium from
the qguadratic, here we will not examine the general case of the
four-frequency interaction in the cubic medium but will limit
ourselves to an analysis of the degenerated interaction of unmodulated

waves, which allow revealing the most characteristic properties of
the cubic medium.

'For systems with concentrated constants such quantum interpre-
tation was first given by Weiss [105].
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Let us examine the interaction in the cubic medium of two waves

with frequencies

=0 and 03=230, (2.45)

E = ¢, 4, (ur) '™~ L e, 4, (ur) e"*~*" - complex conjugate (2.46)

The relationship between wave vectors of natural waves of the linear
medium kl and k2 for the examined interaction should be recorded in
the form

ks =3k, + A, (2.47)

where [A[/k~p.

! In § 3 of Chapter I it was shown that with the passage of two

j waves of frequencies w, and w, through a cubic medium, in it there
appear components of nonlinear polarization at frequencies

(040 +a,) == 30, (“’1'*"91""'0):)-‘:0)1; (0 4+ 03 —a)) =@y (03— 0y —@)) =0y —-

—20y; {0+ 0;—0g) =0;; and (@34 ©;—0y) =w;. Under the zondition (2.45)
enumerated components hive a frequency w or 3w. The full expression
for the vector of polarization P (only companeunts with frequencies

w and 3w are retained) rniow hasc the form (compare with formula (2.36)

Il H A
¥ P = (1) 4 [2) 4 8"t e e 0, A3 =k v 4
! .

A
8% H"e o 0, A2A] 1RO 4

+ gt e, e, e, A A4, /R0
Brreee, 6, 0, A2 A7 gl gter g
F 2B e 06,4, Ay Ay el i—E0 .
A+ 6“‘*"""‘0, e,e,AfA; e'™% L somplex conjugate. (2.48)

Proceeding further in the same way as in the preceding paragraphs, it
is pcssible to arrive at truncated onnafinns’ which degeribe the

vaRliivOvom TYwL LA asuves Mo va M T waas

process of interaction of unmodulated waves in a nondissipative
cubic medium. They have the form

i k, cos k:\sl -C0s sl,\zo%‘:l‘ + 3Cy? AR A, gla* 4
|+ G ALA iyl A A, 2 =0,
kycos k:sz-cos s:\zo ‘%’ + 1yl A:l"e“x e+
+ iy, 03 A AL A, + iy 03 A2A3 =0, (2.49)
18
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Here i _
C=ele ™y g = % (e, 3“‘*"‘“”':; € ¢);
= ?;’:‘ {es %'fi'“‘_"' (AN .e,);
y= 3._3:' (e, ,é".i mﬁm"x e ¢) = %‘; (e, 3"";“""%, € &)

A A
Ya= 47,:" (6,077 e, éy8,) = % (8™ "¢y e, 0,). (2.50)

The last equalities follow from relations (1.37).

The most important distinction of truncated equations (2.49)
from corresponding equations of the quadratic medium (2.39) is the
fact that each of equations (2.49) contains no longer one by one,
as in (2.39), but three nonlinear terms describing the interaction
of the waves. Here the character of nonlinear interactions described
by various nonlinear terms in (2.49), as it is easy to see, is
different. Really, nonlinear interactions proportional to the coeffi-
cient y, just as ncnlinear interactions in a quadratic medium,
considerably depend on phase relationships between the waves, which
is described by the factor eiAzz. Nonlinear interactions propor-
tional to Yis Yoo and y3, are not connected with the phase relation-

ships and, consequently, also with dispersion properties of the
medium.

Therefore, the interactions of the first type (just as analogous
interactions in a quadratic medium, they are maximum when Az = 0
and practically unimportant when Az + ®) can be called "coherent"
in rcontrast to "incoherent'" interactions, which are connected with
nonlinzar coefficients Yo Yoo and 73. Comparing (2.50) with
(1.32) and (1.33), 1t is easy to clarify the physical meaning of
"incoherent" interactions (and "self-actions') of electromagn-=tic
waves in a cubic medium: they, obviously, are ccnnected with ncn-
linear corrections to the dielectric constant.

We will give subsequently a detailed consideration of the pattern
of "incoherent" interactions; here we will limit ourselves only

to the derivation of general energy relations similar to¢ relations
(2.43)-(2.44).
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Let us multiply the first equation (2.49) by l%- and the
KT

»

1

A
second by-—% , and let us add the obtalned expressions with thelr
b

complex conjugate. Integrating with respect to 2, we obtain

k coskAs 0 sA & kA ¢
1 181C0581 Xy . 3 COS K 83 COS 83 Zo
‘41‘4|+"—"_—‘_“

3(02 2

AA = const. ) \
2 o2 2% (2.51

Considering (2.42) and (2.L45), we have

(Bt [Eatalm_ o (2.52)
K

— Manley-Rowe relationship, which is fulfilled in every section z
of the cubic medium for the degenerated four-frequency interaction.

From (2.52) it follows that the increase in quantity of photons
of frequency w, passing through a unit area element, parallel to
the border of the dielectric, by a certain number AN2 is inevitably
connected with a decrease in the number of photons of frequency
wl by AN,;=3AN, and conversely. Just as in the case of the quadratic
medium, the indicated relation would have been possible to write
using the quantum interpretation of nonlinear interactions of waves
as a basis.

Using (2.52) and (2.45), we will obtain the law of the conserva-
tion of energy flow:

[E, B] 2, + [E, Hj] 7, = const. (2.53)

§ I}, @General Characteristic of Interactlons of Waves
in Nonlinear Dispersive Media. Boundary
Value Problems. Secondary Simplifica-
tions of Truncated Equations. Side
Forces in a Nonlinear Medium

4.1. Boundary Value Problems; Classification
of Nonlinear Interactilons

Truncated equation (2.37) or (2.39) and (2.49) describe the
interactions of waves in a nonlinear medium, which occur in absence

20
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of side fields (the linear problem it uniform).'

In § 3, in the derivation of truncated equations, boundary
conditions were considered by us only in the determination or
direction, along which there occurs a change in complex amplitudes,
and the actual values of complex amplitudes An on the border of the
nonlinear medium were not specified. A specific definition of the
conditions permits separating within the bounds of the three-frequency
(for a square medium) or four-frequency (for a cubic medium) inter-
actions different special cases corresponding to different physical
effects. A detailed investigation of the boundary value problems
are given in Chapters III-V; here we will give only their classifi-
cation and also examine certain general regularities of the course of
nonlinear interactions corresponding to various boundary condltions.

In the analysis of general properties of nonlinear interactions,
energy relations of the type (2.43)-(2.4U4) and (2.52)-(2.53) can be
used very effectively; being interested only in the fundamental
side of the matter, we will limit ourselves here to the consideration
of interactions of unmodulated waves in the medium withcut losses,
for the case |A] = 0.

Let us turn to the three-frequency interactions described by
system (2,39). In the absence of side fields, the three-frequency
interaction can appear only in the case when on the borde~ of the
nonlinear medium, at least amplitudas of two waves are different
fror zero, Here, besides the general case,

A1(0)=:0; A;(0)0; A,(0)=0
one should examine such cases for which

A O)F0; Ay(0)£ 05 Ay(0) = O; (2.54)
A0)=0; 4,(0)0; 4,(0)F0; (2.55)
A1 (0) F0; 4,(0) = 0; 44(0) =0 (2.56)

'We call such a problem in nonlinear theory uniform, noting
in this the absence of "linear" side forces.
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From equations (2.39) it follows that with the three-frequency
interaction in a quadratic medium, in general, there are two opposite
processes:

1. Waves of frequenciles w, and Wy excite the wave at frequency

1
Wy = the process of "merging of photons," described by equation

(2.39¢) occurs.

2. Simultaneously with the process of the merging of photons,
there occurs the process of the "disintegration" of photons of
freguency w3 (interaction of waves of frequencies m3 and w5 and
frequencies Wy and wl) described by equations (2.39a) and (2.39b).

In accordance with (2.43)-(2.44), for increases in energies
dwn of waves on segment dz these relations take place: (in contrast
to the integral relations (2.43)-(2.44), then can be called differen-
tial energy relations)

W _dWy AW 4V, 4V, _ _ W, (2.57)

* 0
. Wy oy [OX [ W3

or, in quantum interpretation

dN, = dNy; dN, = —dNy; dN, = —dN, (2.58)

where Nl(z), Nz(z) and N3(z) are numbers of photons in waves 1, 2,
and 3. If ¥,(0) = ¥,(0) and N3(O) = 0 (in general, N,(0) € Ni(0), N2(0))
in any case for not too large z the process of merging dominates

over the process of disintegration; a cecrease in the number of
photons in waves 1 and 2 in virtue of (2.57) is equal and unimportant
and therefore here f'or a description of the nonlinear interaction
only one equation (2.39c¢) is sufficlent. This equation when

A, == const, Ay==cons! has the form

A A dAs
kycos ks S;+cos 8, 2,72 + ipiC, =0, (2.59)
where constant Cy=A4;(0)-A4;(0).
Trom (2.59) it follows that the monotonic growth of amplitude

A3 will take place as long as amplitudes Al and A2 can be consider=d
constants. Amplitude A3 grows linearly in this case with coordinate

22
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(2.59a)

iBwiCy 1
A

A
Ky cos ky 3508 8329

A4,(2) = A, (0) +

At large z the reverse process (disintegration) becomes important.
Here equations (2.39a, b) should be considered. The presence of
the reverse process delays the rate of growth Aq and, in general,

can obviously lead even to a change in the sign of the derivative |

dz
and, consequently, to the three~-dimensional beats of the interacting

waves.

If for boundary conditions of the type (2.54) at small z the
process of "merging" of phectons always dominates over the process
of "disintegration," for conditions of the type (2.55)-(2.56) a
reverse situation takes place. If Ns(0) >N,,(0., for a description of
th» process of "disintegration" at small z, here instead of the full
system (2.39) there can be used the equations

' A
k°°ssxk°coss, Y | it A, (0) 4y = =0; (2.60a)
'*zcost,s.- cosszzo;-t-:ﬁmzA (O)A‘_o (2.60b)
Differentiating equation (2.60a) with respect to z and substituting
the derivative ;ﬁ from the equation complex conjugate to equation
(2.60b), we arriée at the second order equation for amplitude Aq:

%,_ ﬁ%(ox’«»?mf , 0, (2.61)

A A
Ry kg cOS k; $;-COs s, Z0COS k, $2¢C08 $2 Zo

From (2.61) it follows that as long as the intensity of the wave on
frequency w3 considerably exceeds the intensity of waves at
frequencies w; and w,, the "disintegration" of photons of frequency
Wy leads to an exponential increase in amplitudes A1,2 with the
coordinate. The general solution of equation (2.61) has the form

A(2) =a,e"™ + b, (2.62)
and factor of increase

I, = T PlAO)P o el

A AN \ A A ’
&y ky cos ky 8; cos 83 Z5-Cos kg 35-COs 83 2o

(2.63)
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At sufficiently large Al,2 N A3 1t is necessgry to consider the
reverse process (in this case, this 1s the process of merging of
the photons described by equation (2.39c¢c); here the exponential
growth in A1,2 is delayed, and.derivatives ﬂdlzg_l can even change

sign.

Besides extreme cases indicated above, for which either
Ny(0), N2(0) > N3(0), or N(0)» N\(0j, N2(C), other relationships between the
boundary amplitudes of interacting waves can be examined. In parti-
cular, with further specific definition of boundary conditions
(2.54)-(2.56), there can be practical interest in cases when

N3 (0) > Ny (0), Ns(0) (2.64)

and
N; (0) = N4 (0) > N, (0). (2.65)

For not too large z the process of the interaction of waves
corresponding to boundary conditions (2.64) is described by these

equations:

: A A
leOSlepCOSSlZO‘%+‘iﬁ(1)f.43,4;(0)=0; (2'66)
A A -
k,cosk,s,‘coss,zo%+iBm§AlA2(0)=_0._ (2.67)
Differentiating (2.66) with respect to 2z and substituting ‘%3 from

(2.67) we arrive at the differential second order equations for Alz

d2y | - B*14s )12 wj oF
_dz—’l+ A a A — A A= (2.68)
Ry k3 oS ky 33-COS 8 Z5- COs Ky £3-€08 33 Zo
The general solution of equation (2.68) has the form
A =ae+ 5T (2.69)
where AT
- . 2
r,=;]/ 2 — (2.70)

A A
ky kycos ky 3,.c0s $; 25-c0s Xy 83:c05 3,2

From (2.69)-(2.70) it thus follows that in the case when amplitude
A2 can be considered constant, the process of the change in
amplitudes Al and A3 has a character of three-dimensional beats

[to compare with (2.59a) and (2.62)].
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Finally, initial stages of the process of three-frequency
interaction with boundary conditions of the form {2.65) are described,
obviously, by equation

A A dAl 1 2R.2 . __ 771
kyCOSKyS-COS Sy Zo ! + il A A3 =0, (2.71)

In all examples examined till now, boundary conditions were selected
in such a way that in any case near the border of the nonllinear

medium, one of two possible nonlinear processes (disintegration or
merging) played the dominating role, which inevitably caused a change
in the space of amplitudes of the interacting waves. At the same time,
in general, such a celection of boundary conditions is possible at
which at each poilnt of the nonlinear medium there occurs the dynamic
equilibrium between processes cf merging and disintegration and,
consequently, amplitudes of interacting waves remain constant.

Relationships between amplitudes of such stationary waves can
be found from equations (2.39), in which all derivatives %E.go(k=1'2,3L

Presenting complex amplitudes in the form A, =4, expig,(z) and equating
to zero separately the real and imaginary parts of the obtained
relations (see also Chapter III), we arrive at the formula charac-
terizing the bond between numbers of photons in stationary waves

for an arbitrary point of the nonlinear medium (see equation (4.24)):

Nn(z)'Ns(Z)=_IN1(2_3+N2(2)1-N:(2)- (2.72)

The specific definition of boundary conditions permits in a
number of cases considerably simplifying system of truncated
equations. In the weakly nonlinear medium the spatial scales of
processes of the change in amplitudes of interacting waves prove
to be usually very large for processes described by equations (2.59),
(2.61), (2.08) and (2.71). ‘These scales have, obviously, (see
formula (2.38)) the value

. 1
L@L"Q;RE?:' (2.73)

Inasmuch as 1t was already indicated in the introduction (see
formula (I.14)), quantity ):1‘1(0)<10‘5—-,l_0"6 and [P=~10°-10, 1in many
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problems of the characteristic length of the coherent interaction LH

I <L (2.74)

Therefore, although in prirciple both the process of merging and
process of disintegration of the photons always take place, in the
fulfiliment of condition (2.74) it is possible, in general, toc
consider only that one of these processes which plays the determining
role on the border of the nonlinear medium. Here the ana.ysis of

the full system of truncatr 1 equations can be replaced by an analys’s

of the system in which amplitudes of powerful waves are examined as
ssigned functions.

Subseguently, the approximation founded on the indicated circum-
stance will be called the approximation of the assigned field.
Inasmuch as in the approximation of the assigned field interacting
waves are disparate, here within the bounds of the three-frequency
interaction it is possible to separate various physical effects
corresponding to different boundary conditions on the border of the
nonlinear medium.

In the fulfillment of condition (2.74) the problem with bounuary
conditions (2.54) can be called the problem on the radiavion of
harmonics and total frequencies in the quadratic medium. The problem
with boundary conditions (2.55) or (2.56) when N3(0) " N2(0) or
N3(O) - Nl(O) is reduced to the detcting of radiation of waves of
difference frequencies in the quadratic medium. Finally, nonlinear
effects appearing in those cases when the infensity of ~ne of the
interacting waves considerably exceeds the intensities of the two
others (see equations (2.60a)-(2.60b) and (2.66)-(2.67)), within
the bounds of the approximation of the assigned field can be called
the parameteric interaction of the waves. The last term 1s based
on the fact that the analysis of interactions described by equations
{2.60a)-(2.60p) or (2.66)-(2.67) can ve conducted also on the
basis cf concepts about the medium, the dielectric constant of which
is changed in space and in time according to the law determined by
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changes in the field of the intense wave. In order to be convinced
of this, we will derive equations describing the propagation of waves
in the medium, the dielectric constant &Lqm 2) of which is changed
according to the law of the traveling wave:

A
e(?’ ©, 2) —_ :o(m) + p'/e\]_ {e'(")'-'knl) + e—””lr—hl)} . (2 . 75 )

Here u, just as before, small parameter (ugl), the wave vector

k3 = k3zo. We will consider that in the examined medium at arbitrary
angles t0 the normal, directed along the z axis, waves at frequencies
w, and @, fall such that w, + W, = w3, For p«1 it is .atural to
wresent the field in the medium in the form (compare (2.32)):

E = E,+ Ex = €, 4, (u2)e"™ ™" + e 4, (papt™ M 4
+ complex conjugate (2.76)

Substituting (2.75)-(2.76) into equacion

& [v IVEl] + 50 =0, where D=c(t,o,2)E (2.77)

and, using the procediure discussed in & 3 of this chapter, we arrive

at the conclusion that the essential interaction between waves E1,2

in the medium with a dielectric constant of the form (2.75) can

take place only with the fulfillment of condition k1 + k2 = k

(compare (2.34)), where the process of the change in complex amplitudes

Al and A2 in the space 1s described by truncated equations of the
form

A A d . .
k,cosk,sl—coss,zoﬁ-‘+zq,mfAnzo; (2.78a)
A T A )
k,wsmsz-coss,zodf———‘:+iq,mgA;-:O, (2.79b)
where . A CA
= g5{e81€,); M= g5 (e12.€)); (2.79)

It is easy to see that equaticns (2.78) have the same form as that of
equations (2.60) and, consequently, allow the existence growing
solutions of the form {(2.62), which describe the amplification of
vaves E1,2‘ The indicated intensification in terms of the three-
frequency interaction c¢f waves in a nonlinear medium should,
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obviously, be treated as a forced coherent process of disintegration
of photons of freguency w3, which occurs under action of photons

of frequenciles Wy and Wy« On the other hand, with the use of concepts
on the medium with variables parameters the process of amplification
can be treated as the result of the work produced by the nonstationary

medium above waves El > and the very amplification of the waves can
3
be called parametric amplification.

Similarly, the interaction of waves described by equations
(2.66)-(2.67) can be treated as the parametric interaction in the
medium, the dielectric constant of which has the form

A A A '
e(t,0,2) = gy (0) + pe, {e"“’”""*’ + e'“"'""“"‘"}, (2.80)

The process of spatial beats occurring between waves of frequencies

0y and m3 can be called the parametric conversion of frequency in
a medium with variable parameters.

Of course, the consideration based on equations of the type
(2.39) and their results (2.60) and (2.66)-(2.67) is fuller than the
consideration founded on (2.75) and (2.80), inasmuch as in the first
place, here it is possible to analyze the conditions of applicability
of concepts on the medium with variable parameters and, secondly,
directly calculate the characteristics of the tensor of the second
class gp in terms of characteristics of the tensor of the nonlinear
polarizability of the quadratic medium. Actually, in virtue of
(2.38) and (2.79)

A A A A
- Sy=iy -
€186 == dney ™ esey; €, 8 =4 e, ¥ " g €, (2.81)

Within bounds of the uniform problem, the model of the medium, with
parameters variable according to the law of the traveling wave,

is applicable only for the dispersive medium. Actually, the use of
formulas (2.75) and (2.80) assumes the absence of considerable
distortions of the intense wave (frequenciles w3 or w2) in the
examined medium. The latter can take place if, first, waves at
frequencies wy and w, or wy and w3 can be examined as weak, and
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excitation of harmonics nw3, or nw, can automatically be disregarded.
It is Interesting that if the determining modulation of parameters

of the medium 1s an intense force (or, as it is accepted to call
pumping it, wave) can be essentially distorted, the value of the
parametric amplification in such a medium does not exceed ¢ times,
inasmuch as precisely on the characteristic length of the parametric
amplification L(g) (see formulas (2.63) and (2.73)) the sinusoidal

wave of pumping is turned into a wave of the sawtooth form [compare
(2.73) with (I.24)].1

Although the energy relations (2.43)-(2.44) and (2.57)-(2.58) by
themselves do not give infermation about the "direction" of the
nonlinear process(merging or disintegration) in the quadratic medium,
in those cases when this information can be obtained from conditilons
(as takes place in the approximation of the assigned field) the energy

relations permit estimating the effectiveness of the nonlinear
interaction.

Let us note, first of all, that inasmuch as in interactions of
the examined type there 1s always preserved the number of quanta,
and the conversion of frequency "upwarAs" with an interaction of
waves in a nonlinear nondissipative medium occurs considerably more
effective than the conversion cf frequency "downwards."

Let us turn, for example, to the problem on the generation of
difference frequencies in a medium with quadratic polarizatilon,
which corresponds to boundary conditions (2.55). From (2.57) it
follows that signs of increases in energy of waves at frequencies
vy, 0, and Auaﬂ on the segment of the nonlinear medium Az are
identical, and signs of increases AW, and AW; (and consequently, AW,
and AWs) are opposite. Four boundary conaitions (2.%5) and small
z, &W,,>0 and AW,<0; the latter means that independently of
the relationship of the number of photons N2(0) and N3(0) the
energy of the wave on freqauncy wy with growth z increases only
owing to the one most high-frequency wave. Here the energy removed

IPhe last circumstance is one of main difficulties standing in

the way of the realization of acoustic parametric amplifiers of a
traveling wave.
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from the wave of frequency w3 is divided between waves of frequencies

@5 and wy with respect to

AW, _ o (2.82)

and when §f<Kl the increase in energy of the low-frequency wave 1s
small.! Conversely, in the problem on the generation of sum
frequencies, for boundary conditions of the type (2.54), AW, ,<0 and
AW;>0 and, consequently, all the energy of low-frequency photons
participating in the nonlinear interaction passes into a high-
frequency wave.

Relations analogous to those above can be used in the analysis
of general regularities of parametric ampliflicatlon and conversion
of frequency. In particular, formula (2.82) describes, obviously,
the relationship of increases in energies of growing waves in the
problem on the parametric amplification.

In conclusion of this point, let us note that although the
classification of nonlinear boundary value problems given above
pertained to three-frequency interactions in the quadratic medium,
analogous considerations can be assumed as the basis of the classi-
fication of different boundary value problems capable of appearing
within the bounds of four-frequency interactions (cubic medium).

Thus, just as in the three-frequency interaction, in the four-
frequency interaction, in general, there simultaneously occur processes
of disintegration and merging of photons, (complicated by effects of
the "self-action" of the waves, see formula (1.32)). For example, the
second equation of (2.49) describes the process of merging of three
photons of frequency w, and the first equation of (2.49) — the

reverse process of dislntegration of photons of frequency 3w.

When Ni(0) > N3(0) in any case for border the process of merging
™

et us stress that this conclusion pertains only to nonlinear
interactions in a nondissipative medium (medium with "reactive"
nonlinearity). However, an effective generatlon of waves of
difference frequencies proves to be possible in media with dissipative
nonlinearity, for which energy relations of the type (2.57) are
already inapplicable (see [95]).
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of photons (the process of generation of the third harmonic) pre-
dominates.

For a cubic medium the spatial scale of nonlinear four-frequency
interactions L(g) has the "~rm [compare equations (2.39) and (2.49)
and also formula (2.73)]:

1

w)zug(o)k,, . (2.83)
For {,<L® , just as in the fulfillment of condition (2.74) in the
quadratic medium, in the whole cubic medium it is possible to
consider only that nonlinear process (merging or disintegration)
which plays the determining role on its border. Condition I <L,®,
is thus the cendition of applicability of the method of the assigned
field in the analysis of four-frequency interactions. The effective-
ness of a certain four-frequency interaction, just as the three-
frequency can be estimated with the help of energy relations of the
type (2.51)-(2.53).

4,2, Side Forces in a Nonlinear Medium. Truncated
Equations of a Nonuniform Problem
of Electrodynamics of a
Nonlinear Medium

The method of conclusion of truncated equations, discussed
in § 3 of this chapter can easily be generalized in the case of a
nonuniform problem.

As an example let us examine the three~frequency interaction in
a quadratic medium, at each point of which there acts a side force -
side current with desnity I(t, r).

Then initial equations of the nonuniform problem have the
form [compare (I.1)]

1 o
mtE=—75‘—; (2.84a)
= 1OE  Ax 3P , 4n
rotH = cwtTa T ~1¢, 1), (2.84p)
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and the coupling of the vecter of polarization P with field E is
recorded In accordance with results of Chapter I. The second order
equation, which corresponds to (2.2), for the nonuniform problem has
the form:

4n &ep 4 a1 " Qe
vivEl++ G+ B+ oF (60.E55) + 5 =0. (2.85)

The method of deriving equations of the ’irst approximatior corre-
sponding vo equation (2.85) is analogous to that discussed in § 2-3.
At first it follows to find the general solution in the zero approxi-
mation (¢ = 0) and then to clarify how nonlinear and dissipative
terms disturb. Here the question of the selection of the order of
smallness of the side current is very important which should be
determined from physical considerations.

In many problems of nonlinear optics the appearance of side
forces in Maxwell egquations 1s connected with natural fluctuations
in the medium. In this case it is natural to consider 7 ~ u f{or
even I W u2) and therefore to examine the plane monochromatic waves
of constant amplitude as natural waves of the medium in a zero
approximation.

Then the solution of (2.85) for the case of a three-frequency
interaction can be sought in the form of the superposition of
three waves with complex amplitudes (2.32) slowly variable in time
and in space. It 1s necessary to stress that in the nonuniform
problem the dependence of the complex amplitudes of waves in the
medium on time, in general, takes place also when waves falling on
a nonlinear medium, are unmodulated; the latter is connected with
the time dependence of the side current I.

Let us assume that at first I ~ pu., 1In this case the presence
of the side force will already nave an effect on the form of
equations of the fivst approximation. Substituting (2.32) into
(2.85), using (2.33), (2.35) and (2.36), multiplying in turn the

obtained expression by

e exp i i—K, 1); e;expi(wf—K,r); esexpi(wsl—K,1)
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and, each time conducting term by verm averaging over the period

Ty 5= , we arrive at truncated equations of the nonuniform

2
pe KB
problem.

For amplitude Al’ for =xample, we have:
24, :
[CRLSTAIEN x + [e [k &)} VA, +

F (oo A +iBoiet A A+ LI (utpr) =0, (2.86)

Here .
& X expioyy-d
{ry piw y-ay. (2.87)

e L4 L

. Oy
> bt py=—

Quite similarly, in equations for Ay and A3 there appear terms

L(ut, pr), and L, pr), which can be obtained from (2.87) of the
corresponding replacement of indices. Thus, the presence of a

side current distributed over the medium in the first approximation
leads to the appearance of external forces acting on the slowly
changing complex amplitudes of interacting waves. Formula (2.87)
shows that the essentially the flow of a three-frequency interaction
in a quadratic medium is affected only by those components of the
side current which can be represented in the form of the super-
position of three waves similar in their structure to waves of (2.32),
i.e., for an analysis of the influence of side force i::%% entering
into (2.85) on the process of the three-frequency interaction one
should separate from 1 only components of the form

- 3 °
=X € ln (ut, pr)-exp f (0, —K,r). (2.88)
n=l

If current I(t, r) is random, the slowly changing functions In are
random. Statistical characteristics of the latter can be easily
determined if statistical characteristics of the random field I
are kKnown.

Let us note that the fruitfulness of concepts on side fluc-
tuating forces in the theory of natural fluctuations of a non-

quasli-stationary linear medium was first demonstrated in the monogranh
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of S. M. kytov [108]. There is the possibility of using these
results in the investigation of statistical phenomena in a nonlinear
medium. Certain concrete results cbtained in this direction are
discussed in work [56].

In the case, when according to conditions of the problem there
should be ascribed the second order of smallness (I ~ u2) to the

outside force, the complex amplitudes can be represented in the form:

A, (e, pr) = AD (ut, pr) + pa, (e, ), (2.89)

where small additions of a, characterize the change in the complex
amplitudes due to the influence of side forces. Here if on the
border of the nonlinear medium waves En are unmodulated, instead of
(2.89) it is possible to write:

An (p'tv l“') = Aszo) (_u.f) + P‘an (l’d' }ll'). ( 2 * 9 0 )

Equations for AJO) have the same form as those for the uniform

problem, and equations for a, have the structure of equations (2.86).

Thus, for ays for example, we have [compare (2.86)]:

A
[ex [y €511 5, 222 4+ [e, [Ky 1] vay + (ya e ay + .
- ifafe ™" (AP a3+ AP"a) + 22 1, (ut,p) =0 (2.91)

Thus, the appearance of small (vu or u2) side forces does not change
the general form of the solution of (2.32) and only changes by in
some measure the behavior of the slowly changing complex amplitudes.
Viith a sufficlent degree of accuracy one can assume that here,

just as in the uniform problem, the "direction" of the nonlinear
process (merging or disintegration) in any case near the border of
the medium is determined by boundary conditions.

The presence of intensive side forces (I v~ uo) is reflected
already in the form of resdlution of the problem oblained in zero
(u = 0) approximation. Actually, here the equation of zero
approximation should be recorded in the form (compare (2.5))

!For simplicity here we do not consider other effects having
an order of uZl.
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4B 44Dy oy (vEl =0, (2.92)

From (2.92) forced waves E(B) excited in the medium by side forces can
be determined. Let us assume that, for example,

%:mloexpi(mt—-k‘r),' (2.93)

where in general kIm # 03 the side force is not required to have
the form of a transverse wave.

The forced wave can be written in the form

15 = A exp i(w— k1) (2.94)

and, consequently, the amplitude of the forced wave ls determined
by the relation (compare (2.8))

@A+ 410' % (@) A + ¢ [ K, [k, A]] + 4xmJ, =0, (2.95)

For the isotropic medium, and alsc for the case when in the anisotropic

medium the optical axis is perpendicular to the plane kI’ m, it is

possible to introduce the scular dielectric constant e(w) = 1 +
+ Unk(w), and then for kIm = 0 we have:

o) 4wt 2, '

where &, =-i:l vV e().

From (2.96) it follows that for the weakly absorbing medium
(Imk ~ p), the assignment of side forces in a zero approximation is
correct only in the case when they do not have a resonance action
on the medium, i.e., if the phase speeds of forced waves are not
equal to phase speeds of natural waves of the medium at corresponding

frequencles (for a side force of the form (2.93) the field of the
forced wave is finite if kI # kw).

In a quadratic medium field E(B) excltes the wave of polarization
at frequency 2w:

P* = py[A") exp i (20f — 2k 1). (2.97)
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The amplitude of the wave of the second harmonic, excited in the

medium of the wave polarization (2.97) will be finite 1f hzw # 2kI
(see formula (I.21)-(I.22)).

Thus, in a nonlinear medium the forced wave E(B) can be
examined as the assigned only until distortions of its form are
stored. Everything that has been sald means that concepts on side
forces naving an order of Mg in the examined theory does not lead
to interral contradictions only when forced waves, excited by
these forces, can be examined as stationary, which do not undergo
noticeable distortions in the medium. It 1s natural, therefore,
to treat the influence of such waves on the medium as the mcdulation

of its parameters. Left us discuss this question in somewhat greater
detall.

L.3. Medla with Variables Parameters

In virtue of (I.6), the vector of nonlinear polarization of
the quadratic medium, which is under the influence of a strong side
field (£ ~ uo) and natural ("free") wave E

PO sz' [X (¥, OVEC—E)E® —t—tyat* +
1] .

+Jdt’]'£(t’,t”):';f(f—t’)E(l——t’——t")dt'-{- .
o ‘

+ ‘\:dt’ f{?(t’, ) EMe—t") E® (¢ — 1 — ) dr", (2.98)
6 o .

(Here reduced symbolic notation is used,) The first term in
(2.98) describes the interaction of waves E and E(B), the second —
the dfstortion of wave E and the third ~ distortion of wave E(a)
If [EW|» JEl, with substitution of (2.98) into the Maxwell eguatic
it is possible to hold only the first term proportional to E'E(B
(stored distortions of wave E(B) are impossible, and distortions of
wave E agalnst the background of the influence of wave E(B) on E
are unobtrusive)., In this case the behavior of wave E in the quadratic

ne,
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medium, which is under the influence of an intense side force, is
deseribed by the following equations [compare with equations (2.84)]:

1 oH |
rotE=-—-;--§*. ' (2.99a)
mm=%‘§-+i’i—” x(r,tt';E(t-t’>dt' (2.99b)

where, the polarizability x(r, t, t') dependent on time ¢ and in
general on coordinate r, yields expression [see (2.98)]:

A A “A :
x(r,4,") =% ()4 §x(t',t") EY (rt—t —t)dt" =

=% (E)+M(r. 4, 0). (2.100)

Equation (2.99) can be used in the investigation of the propagation
of relatively weak waves in a cubic medium, which is under the
influence of intense side electromagnetic fields.

In this case, the polarizability of the equivalent medium with
variable parameters can be represented in the form
A LA A L,
x(r.4,0) =x{¢)+ M(t, 1,1}, (2.101)
where

A}

A o - . , .
M) =fa farm b, e, e @ 1wt )X
. 0 .
- XE® (1,8t —1*—t"), (2.102)

If the modulation of parameters of the medium 1s produced by a side
electrical field, properties of the symmetry of a teasor of the

second order X mn are directly determined by properties of the

symmesry of tensors x or 9 which is investigated in Chapter I in
detail. In spite of the fact that in majority of practically
interesting problems the model of the medium with variable

parameters appears Lsee, for example (2.100) and (2.101)] as the
maximum case of the general problem on the interaction of oscillations
and waves ir a nonlinear medium,! the approach based on d&irect

!Comparatively slow changes of properties of the medium can be
obtained with the influence of forces of nonelectric origin. A
classical example is the modulation of the dielectric constant of
the medium with the help of ultrasonic waves. Detailed thecretical

research of the propagation of light in such a medium 1s given in
the work of S. M. Rytov [109].
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consideration of equations of the type (2.99) is of interest. The
theory in which equations containing tenscr an(r, t, t'), appear

as the initial can be called the electrodynamics of nonstationary
meiia. The expediency of construction of such a theory i1s connected
to a considerable degree with the importanne of clarif.cation on

lts basis of general properties of quantu.-mechanical and parametric
amplifiers. The nonequilibrium of the medium, utilized in such
amplifiers, is conditioned, as is known, by a varliable external
influence — oscillations or pumping waves. Examination of the general
theory of medlia with variable parameters emerges beyond the frame-
work cf this book; we refer the reader to a number of works of

F. V. Bunkin and colleagues [117]-[124] in which for periodically
nonstationary medium general properties of tenSUrlﬁ. radiation,
natural fluctuations etc., are investigated. 1In this chapter we

will 1limit ourselves to certain remarks referring to the propa-
gation of waves in a medium with variable pararnaters. It is expedient
to distinguish here two groups of problems:

I. Problems connected with the propagation of waves in a medium
whose parameters are changed only with time (nonstationary spatially
homogeneous medium).

II. Problems connected with the propagation of waves in a
medium whose parameters are changed bo:h with time and space
(nonstationary spatially nonunif.~m medium). Although, in principle,
in both of the indicated cases there i:s interest in the arbitrary
law of the change in parameters of the medium, experimentally
realizecd situations cf the case when parameters of the medium are
changed perindically corresprnd most closely.

Being interested here only in the fundamental side o° matter,
we will consider for simplicity that the law of the change in
parameters of the medium 1s the harmonic law. Then for the spatially
homogeneous medium the vector of polarization can be represented
in the form
oA ’ l‘?l..A ’ ’
P=(x¢)E(t—t)dl'+e jM(t)E(t-f)dz
- 0 ’

(2.103)
+ complex conjugate,

38




(where @ — frequency of the change in the parameter), and for a spa-
tially nonuniform nonstationary medium

P={ x@IEC—1)d +¢ ™ fyE—ryar +

0 9 (2.103a)

+ complex conjugate.

Here kQ — wave vector of the wave of the change in the paramet;er'.l !
Bguations of electrodynamics of media variable parameters are
simpler than corresponding equations of a nonlinear medium. Therefore ‘.
here, in any case for the periodically nonstationary medi, it is ‘
possible to record the form of the field in the medium. Moreover,
exact solutions of equations of the type (2.99) can be obtained for
certain, indeed rather artificially selected, nonperiodic laws of
the change in properties of the medium (see, for example, works
[112-113], where there 1s investigated the <hange in the amplitude
and frequency of the electromagnetic wave propagating in the medium
the parameters of which linearly or quadratically depend on time).

Let us assume that on the medium, the properties of which are
described by formula (2.103), there falls a plane monochromatic
wave ol frequency w. Then the general form of the plane wave in

'If modulation of parameters of the medium is carried out by
the electrical field, using (2.100) and (2.101), one can determine
the frequency Q and characteristics of the tensor i according to the
assigned polarization and frequency w of the side field. For the
quadratic medium, obviously Q=o; =k

A(l’)_:(;ﬁ(t',t')ﬂ" exp {— QU + 7)) dt”.
For a cubic medium Q= 20, ko= 2k, and ~[
P (t').——-;f'e(t'.v.t") AW AW exp (— Q2L + 2" 4+ (7))drE",

Let us note also that with transition from a cubic medium to a model
of the medium by variable parameters, in contrast to the case of

the quaaratic medium, the stationary part of the polarizability
should be modified

A /l -» o -
1.(") = ‘l.(.) (I'H—-JJ 9(”.""'0) E(') (=t~ ‘-) E(.).(l—'- U " f') di”dt
. [ - . . “or . e e e oo, T
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In such a medium is given by the formula

E(rh="§ B (n)expi(o+n@)t. 2 (2.104)
Fn—

The fact that (2.104) indeed gives the general form of the wave in a
periodically nonstationary medium it is easy to be convinced, using,
for example, the method of successive approximations. (In virtue of
(2.103) the wave of the frequency w excites in a nonstatlonary
medium waves with frequencies w ¢+ ©, and these waves in turn excite
waves with frequencies w * 2Q etc.),

If all waves, (2.104), are equivalent, substitution of (2.104)
into Maxwell equations leads to an infinite aystem of differential
second order equations for complex amplitudes E(”)(r). However, in
concrete problems it is frequently not necessary to retain all waves
ir the solution of (2.104). An especially fruitful means of the
simplification of the problem here, just as in the nonlinear problemn,
is the prelimlnary estimate of the order of smaliness of different
terms in (2.103). In many cases quantity;ﬁ can be examined as small
&uvp, Then, in the solution of the boundary value problem of the
electrodynamics of a nonstationary medium, in any case for not
tco large z(z = 0, as earlier, corresponds to the boundary) in
(2.104) it is possible to retain only the first two combination
frequencies (w + Q3 w ~ Q) and reject the others (their amplitudes
have an order of u2, u3 and etc.).

Then the solution can be presented in the form

E(r,f) = ﬁ B! (uz, r)expi(o + n9)¢ (2.105)
p— .
(here m no longer exceeds unity and two), and further we can use the
method of derlvation and analysis c¢f truncated egquations discussed

in § 3 of this chapter. It is not difficult to be convinced here
that in a spatial uniform periodically nonstationary medium, the
obtaining of stored effects (monotonic change in complex overall
amplitudes) in general is impossible.

'Complex amplitude B(") contains the phase constant of the wave.
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Actually, in accordance with (2.103), in a periodically
nonstationary medium the wave of the field of the form

E™ = AW expi[(@ +nQ) ¢t —k,1], (2.106)

besides the wave of polarization at frequency @,=0 +n¥, also
excites the wave of polarization at combination frequencies. These
waves have the form:

petsinth 1@1 (0 4+ n?) A™ exp i[(0 + n -+ 9)1_—‘ k.r] 4+
+ complex conjugate (2.107)

putsin—1 — M @+ n2) A expifo + aQ — )t —Kq1] +
+ complex conjugate (2.108)
A = A e
Here hum-kn9y=jﬁdaﬁiq“7“"dﬂ — Fourier-component of the tensor M.
0

From (2.107) and (2.108) it follows that neither in the medium without
dispersion nor in the medium with normal dispersion do forced waves

of polarization have a resonance effect on the medium. Actually,

for both of the indicated cases cannot be simultaneously fulfilled

the relations k, _, =k k,,,=k.. Therefore, truncated equations for

n41
slowly changing amplitudes willl contain in the right sides oscillatory

terms of the form:

2 e, Me, AV expif(k,_—k,)1)

(en — unit vector characterizing, as earlier, polarization of the
wave E(")), the presence of which prevents the appearance of stored
effects. In particularity, in a sufficiently extended peri lLcally
nonstationary medium, even for > w parametric amplification

proves to be impossible (in application to the periodically transient

plasma this is shown in works [122]-{1231).

Another situation takes place in thie case when the periodically
nonstationary medium is simultaneously and spatially nonuniform and
is described by formula (2.103a). In this case instead of (2.107)
and (2.108) we have:
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pote (k) _ M (o -+ nQ) A exp [((n +nQ-|- )¢ —

— (ko +k,)r] + complex conjugate (2.109)

A
P = M (0 4+ n@)A™ expi (0 + n2 — Q)1 —
—(k,—kg)r]+ complex conjugate (2.110)

If ko+K, =k, K,—~ko=k, , waves of polarization (2.109) und (2.110)
have on'the medium a resonance effect and thus can lead to stored
effects.

A special case of such resonance interaction is the case of
parametric amplificatlion of two waves examined above witvh frequencies
wy and Wy s which satisfy the relationship eo,+0; =0; (in designations
of formula (2.104) @ =0; 0;=2), At the same time in a medium with
parameters variable in accordance with (2.103a) more complex multiwave
interactions are possible. The general form of the plane wave in
the medium whose properties are characterlived by (2.103a) is given by
formula [compare (2.104)]:

[ . .o
E(r,t)= Y B(n)(r)expi[(m-}-nQ)t—nkgr]. (2.111)
ar Nrse—ey .
In certain cases instead of (2.111) another notation at which proves
to be more convenient (the complex amp.itude is in the form
Br)=C™ ¢'*, where C(n) is the vector constant. Then instead of
(2.111) it is possible to write

- noad e -
"E(r,f)=expifof--Tr] 3 C™expin [ --k,1].

Nar-wos

(2.112)

The last expression is the result of Floquet theorem [125]. Actually,
in accordance with the Floqguet theorem

Efr,t)=expiot—T5] - & (Qf —k, r) .

and the sum in (2.112) corresponds to the expansion of function ¢
in a series along space harmonics.

The general solution (2.112) should be substituted into the
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Maxwell equation; tnen from the condition of the difference from

¥ A )

f zero of constants C(") there can be cobtained the dispersion equation,
which connects quantities [ and w.

CALETY ol i

Directing the wave vector kQ along the z axis and assigning
the specific form of polarization of the incldent wave, using
(2.103a) and equaticns (2.99), we can record for the nondispersive

! medium:
g. . gfagg%ﬁ%+%g@hhﬂ+qfﬁmﬁquL (2.113)
E | { Here € ana € — scalars.
i Substituting (2.112) into (2.113), we arrive at an infinite
system of equations of the form
e 1) (231

. Discussion and analysis of the system of the type (2.114) is contained
‘ in [126-130]. A general investigation of the dispersion equation
of the medium with variable parameters proves to be very difficult.
; : In specific problems, however, considerably simplifications are
i i possible which are based on the fact that the dispersion character-
( istic of the real medium allows an effective interactiin of only
‘ a finite number of waves. Therefore, the infinite system (2.114)
L can be replaced by the truncated system; with this the order of the
; z dispersion equation appears finite. Additional simplifications are
obtained taking into account the order of smallness of modulation
percentage of parameters of the medium (usually, € v u).

P e

The character of stored effects appnearing in the medium with
variable parameters depends on the relationship between frequencies
2 and w. If o»L, the monotonic change in amplitudes should be
treated, obviously, as a stored (with distance) effect of the
modulation of the high-frequency wave of a periodically nonstatio.ary
A medium (by the field of the low-frequency side wave).
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: An example of such a slituation will be discussed in Chapter V.

* Let us note only that it 1s more convenlent to describe the effect

3 of modulation in a time and not spectral language. Therefore, here

' instead of (2.112) in certain cases it is expedient to look for

b the solution in the form of a wave with modulated amplitude; here
instead of the system of truncated equations in ordinary der.vatives,

1 one should examine one truncated equation in partial derivatives.

i Cases w v Q and Q > w correspond to conditions or parametric

i amplification and converslon of the frequency. Here it 1s expedient

|

to examine the system of truncated equatio.s recorded for complex
i amplitudes of different spectral components. Of course, these trun-
cated equations can be equations in partial derivatives; with such
| a position of things it is necessary to encounter in problems
parametric amplification and conversicn of the modulated signalc
§ (see Chapter V).

g § 5. Surface Nonlinear Interactions. Reflection
b of a Plane Electromagnetic Wave

from the Border of the

c Nonlinear Medium

5.1. Formulation of the F.,oblem

In the preceding paragrapn, with the classification of nonlinear
£ interactions, teforehand we were assigned values of amplitudes and

; directions or wave vectors of interacting waves on the border of

P the nonlinear medium. In reality, one should consider amplitudes

1f’ and directions of wave vectors of waves falling on the border of

the nonlinear medium to be assigned. Therefore, with strict setting,
: examination of interactions of waves in the nonlinear .iedium should
‘& be preceded by the investigation of regularities of the reflectiocn

# and refraction of waves on its border. Here there appears, thus,

the whole range of problems connected with the genevalization of

formulas of Fresnel on nonlinear media. It is importani to stress here
E that inasmuch as on the border of the nonlinear medlum the principle

superposition is disrupted in the generalization of Fresnel formulas
E one should examine not only cases of the fall of monochromatic

»
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waves but also the problem about the interaction of waves of different
frequencies on the border of the nonlinear medium.

A strict solution of the indicated problems (we will subsequently
call them problems of "surface nonlinear effects"), just as that
which took place for problems on "volume" nonlinear interactions
discussed in preceding paragraphs, proves to be very difficult.
However, for the most practically interesting case of the weakly
nonlinear and weakly absorbing medium, it 1s possible to develop a
comparatively simple method of analysls of surface nonlinear pheromena,
which are based on the approcximation of the assigned field. Actually,
nonlinear interactions, which determine regularities of the reflection
and refraction of waves, occur, obviously, in a very thin boundary
layer, the linear dimensions of which er have an order of thickness !
of several atomic layers and do not exceed, in any case the |
wavelengths. Therefore, in a weakly nonlinear medium reactions of
harmonics and combination frequencies, which appear with surface
interactions, on generating waves can deliberately be disregarded;
the last circumstance 1s, as was already indicated, the initial
point of the approximation of the assigned field.

—— o - -

Below we will illustrate, following basically work [131], the
indicated methcd in the example of the problem on the incidence of

a plane monochrom.tic wave on the surface of a weakly nonlinear
guadratic medium.!

Let us consider the half-space filled by the nondissipative s
quadratic medium whose nonlinear properties are described by the ;
tensor XZmm~p. Let us assume that the boundary coincides with f/

!'plthough, in principle, an analogous problem can be stated
for the cubic medium, the case of the quadratic medium in the
problem of surface interactions is the most important. The facl is
that in the surface layer of the cubic medium the potential function
is no longer symmetric, so that the polarizability of this layer
is described no longer by an equation of the type (1.17a) but rather
by an equation of the type (1.41la); the nonlinear polarizability of
the surface layer of the cublic medium is close in their characteristics
of such for a quadratic medium and is desoribed by a tensor of the
third, and not the fourth rank., (Experimental confirmation of this
fact was obtained in [31]).
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plane (¢, ¥), and let us direct the z axls inside the nonlinear
medium (II) (Fig. 2-2). Let us assumwre that from the linear lsotropic
medium (I) onto the boundary av angle 0%“) to the normal a plane
monochromatic wave 1s incident. The electrical and magnetic fleld

of the incident wave have the form:

Ef" = el” Al -exp i (ot —k{"r); (2.1152)
HY? = Z [k "] Al expi (ot -k 1). (2.115b)
a)
\\/.M c{"'
!
wfoot
o™ |8 -
o
™
7' k'lm?
Optical axis
of the crystal
)

Fig. 2-2. Location of vectcrs in the
problem on the reflection of a plane elec-
tromagnetic wave from the boundary of the
quadratic medium: I -~ linear medium;

II — nonlinear medium; ® — denotes that
the corresponding vector is directed along
the normal to the plane of drawing; a)
location of vectors for waves of frequency
w3 b) location of vectors for waves of
freguency 2w, 2a' — edge of cubic crystal.

Subsequently we will be basically interested in surface nonlinear
effects in optically isotropic crystals I the class Td (precisely
in such zceystals these effects are studieo experimentally in the
most devail of all, see [202] and § 3 of Thapter VI). At the

b6

- e 4 p e Yo e

e -t rn o v s oA AR v wm ok s b m Ammv o smn ma o a wmasw ¢ eamame v e amwe a e wa mm v em e aem A A m s emm e e w e



same time, results of the conducted calculation, as one will see

SN from subsequent computations, after a certain correction can be
l applied to anisotropic crystals of the class D2d'

In the last case
we will assume that the direction of vector qb 1s selected specilally

so that in the medium one refracted (extraordinary wave) was excited.
.. We will consider further that the z! axis in Fig. 2-2 1is directed

alon; ~ne of the edges of the cubic crystal (or along the optical
. L axis f the uniaxial crystal).

PN ]

With resolution of the problem on the reflection of the wave
from the boundary of a weakly nonlinear medium, the sequence of
F calculation coincides with that accepted in §§ 1-3 of this chapter.

5.2. Zero Approximation. Reflection from the
Border c¢f the Linear Isotropic Medium

ey

Do In zero pu = 0 approximation the problem is reduced to ths

investigation of the reflection of the wave from the border of
the linear medium.

I WO

—

To solve it, linear Maxwell equations (I.1)
and the condition of continuity of fieids on the border should be

used. For harmonic waves of the form (2.115) equaticns (I.1l) can
be recorded in the form:

Ko A S A

B g
B .y

oH=c|kE}; we(0)E=-—c[kH]. (2.116)

A C Ly SO a N

For a uniform medium without losses the reflected and passing waves

are plane. Fields of passing and reflected waves can be presented
in the form:

P h T

¢ EM —e ™ AP exp i (of — k™ r); (2.117)

. . !
E(™ = of™ A{™ axp i (of —— kP 1), (2.118) |

e A WP sk b s R wion e

and corresponding magnetic fields can be recorded also just as in ’
(2.115). All vectors e{™ef™, ef® lie in one plane (see Fig. 2-2). :

From the homogenelty of the problem in plane (-, y) 1t directly
follows that: :
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B0 = 4P = plow® (2.119)

and, consequently (all components ky =0)

.. in) e(otp)' 3‘"61 ! ‘/_Fl)—(;)—
P L. sins(“” 8§ () '
ku =—&l"; M =2/ 2V () — (o) sin* B (2.120)

(Here ef© and sf”w) — spectral components of the linear dielectric
constant of media I and II, which correspond to the assigned
pelarization e parallel to the incidence plane). Relationships
between the complex amplitudes of the incident, reflected and past
waves can be set from conditions of continuity of tangential com-
ponents of fields on the border. TFor the selected polarization of
the incident wave these conditions should be recorded for components
of the electrical field Ew=erd4 and magnetic field H,=H=%k.4.

S e L M Zizm—~0 ~ “Xza-0 .
Hl o= Mo’ Egsno =E4 (2.121)
Noting that in accordance with (2.116), E,;_‘w.:(m) k. H, equalities
(2.121) can be written in the form:
H(ﬂ)+H(m) H(“P) 4
"‘:‘? [ H® H(orp)]__ k) :H(np). (2.122%)

s‘,')(a)) e{? ()

Solving equations (2.122), we arrive at Fresnel formulas for the
wave of the chosen polarization

° I

Y. LA L I ‘/ D@ o, (2.123a)
ag) (@) 4P+ 2{M(0) k(") o) .
81 (). {2 — e (o)A

A(WP) —
ef! (@) 4™V ()£

AR (2.123b)

8




From formulas (2.123) there can be calculated the linear reflectiviuvy

of the medium with respect to power, R(n):

g - L] (2.124)

tg? [0f 6]

Similarly there can be obtained formulas of Fresnel and for
the wave rolarized perpendicular to the plane of incidence. For
the case of double refracting medium and geometry, selected in
Fig. 2-2, formulas (2.120) and (2.124) chould be corrected; here
it is impossible to introduce e&,(®) (see [381).

5.3. First Approximation. The Appearance of 3
Harmonics in the Field of Reflected Wave

In a quadratic medium the passing wave (2.117) can be distorted,
and, consequently, the spectrum of it can be enriched by harmonics,
2w, 3w, ... (the corresponding fields will be designated E2, E3 vee)
The full field in the transition layer of a weakly nonlinear medium
can obviously, be represented in the form:

EC™ = EfP 4B £ B+ (2.125)

It is necessary to stress that here, in contrast to the problem on
volume nonlinear interactions, where we did not make, in general,
assumptions on the smallness of fields of harmonics or combination
frequencies but proceeded only from the slowness of the change in
them in space, the actual fields of harmonics can be considered
small. The growth of the order of smallness with the number of the
harmonic for surface nonlinear interactions is natural, inasmuch as
the m-harmonic appears in the quadratic medium as a rccult of the
nonlinear interaction of the (m - 1)-harmonic with the field of basic
radiation. In the first approximation EY? =E{" {uEf”, and calcula-
tion of the characteristic of wave EY® can be conducted in the
approximation of the assigned field with the help of the following
equations:

hg
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rotsﬁ_;’”n—-‘-:—h}’ ;o (2.126a)

o_ & (20) iﬂgﬂ 4 3 o
ot H{P =2 —e— 4 == P, (2.126b)

where .
pre — i\einp) ey [A;np)]z expd [20f — K 1] =
- =p[5?'=_expi[2mf——kpr]. (2.127)

The general solution of equations (2.126) is the superposition of
two waves of the frequency 2w — natural and forced [see (I.21),
(I.22) and (2.96)], the wave vectors and polarization cf which are
determined by polarization p and wave vector kp compelling wave of
nonlinear polarization (2.127) and by boundary conditions.

In accordance with (1.45), k=2 k{"»; the direction of vector p
can be defined by well-known properties of the tensor of nonlinear
polarizability Xmnm ! (see § T of Chapter 1) and assigned polarization
of wave Egnp . Inasmuch as the general properties of symmetry of
the tensor Xpmm ! 2T€ determined by properties of symmetry of the
crystal, along with the system of coordinates introduced in Fig. 2-2,
it is expedient to introduce also one more system of Cartesian
coordinates whose position of the axes is determined by the position
of the axes of symmetry.

Let us consider as an example a crystal of the Td type; as
was already indicated in Chapter I, crystals of this type allow
existence of tensor x. Let us introduce the system of coordinates
2', y' and z' connected with three axes of the cube. Noting that
according to conditions of the problem vectors z,. k" and e{"
lie in one p_ane for components of vector e{P along axes x', y' and
z', we have:

¢f2} = —cosB cos g; (2.128a)
ef™?) = —cosBsing; (2.128b)
efl} =sin®, (2.128¢)
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where 6 — angle between the beam vector sf® and axis z', and ¢ the
angle between projections of vector sf* on plane x’ and y' counted

off from the z' axls. In accordance with data of paragraph 20,

§ 7 Chapter I, for crystals of the class Td only components X,y Xy'urz,
and %ry'w' are different from zero. Therefore, components of vector
PQ‘” in axes x', y' and z' are equal to:

Fe) = — %— Aryeer * [APP]25in20-sin @;

(2.129a)
: 1 I :
P == K2 oo+ LA} sin W cps g; (2.129b)
i .
PEY = 2 %3 o e + [AfP]?cos?Osin 20., (2.129¢)

Let us note that these components have the same form for a
crystal of the ng type and geometry of Fig. 2-2.

Thus, vector P2

“ in the examined example has components which
are both parallel and perpendicular to planes Zo K{". Let us assume
that axis y' coinecides with axis y @=0). Then P = Y¥ps the wave of
the nonlinear polarization, is transverse and excites waves in the

medium at a frequency 2w (see Fig. 2-2b),

Field E{™ in the medium can be represented in the form:

Ef? = ef™ Af"™ exp i (fuf — k1) +

Brtd  Xowyrqe -sin20. [AP]? -
e = PP | expi {20/ —kpr], (2.130a)

and the ccrresponding magnetic field:

H™ = %_ [KE™ efr] A expi (206 —ki 1) +

~ 20 L ein 20, [ 402 'y
+[Yokp]'2£»" 8t Xyl oo qr o sin [A, ]expt(Zmi kpr) (2.130b)

"; N
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Waves (2.130) can satisfy the boundary conditions only in the
case when in the vacuum there propagates plane wave of the form

EF' = ef™ . Af™ exp 1(20f— k™ 1) (2.131)

(where in virtue of the selection of angle ¢ made above, vectors el |
g?.and ¥y are parallel). The latter means that the appearance of
the wave of nonlinear polarization (2.127) in the medium should
inevitably lead to excitation of the second harmonic not only in the
field of the refracted wave but aiso in the field of the reflectcd
wave.

The direction of wave vectors k™ and ki and amplitudes of
reflected and refracted waves of the second harmcnic will be deter-
mined from boundary conditions. Thus, just as in the zero apjroxima-
tion (see (2.119)), for components of wave vectors along the x axis
we have:

M AT = = 4D (2.132)

(in accordance with the geometry selected in PFig. 2-2, all ka = 0).

Using (2.132), one can determine angles 6P and 6™. Consider-
ing (2.120), we have:

st Y o)

. — )
B N AT

3&0@”’:4]/ :E_Lgﬂ-ﬁnﬂ@’, (
ca T o!l)(2w) *

From (2.133) it rollows that in general the direction of the
wave vector of the natural wave of the second harmonic in a non-
linear medium differs from the direction of the wave vector of the
refracted wave of the main frequency and, consequently, and wave of
nonlinear polarization; 6P =g only when #{"@2w)=ef"w). The

(2.133)

o
.
[
(W8]
I=
~—
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relationship between the angle of incidence 8" and the angle o™
characterizing the direction of the wave vector of the second har-
monic, radlated in the linear medium, depends, as follows from
(2.134), on the dispersion pruperties of the latter. In particular,
if the linear medium is nondispersive, the "reflected wave" of the
second harmonic propagates in the same direction as does the
reflectri wave of the maln frequency.

For waves polarized peirpendicular to the plane of incidence,

the relationships between amplitudes can be established from the
condition of continuity on the boundary of components Ey = F and Hx.

Elx..g-.o"’sl:-o;. Hxlx-w“" f R (2.135)

«e

From the first condition of (2.135), designating P= _;- Kherp +SIN20 X
X[AfP P, we have:

An B AxPY
Agm) 5” .@)@@r:cgn(q)" (2.136)

From the second condition of (2.135), using relation (2.116), we
have:

—Agm V603 (@) cosoyem = Afm 1/ 0 (20)cos g
APy
tL s ey = )

-V @) cosope . (2.137)

From (2.136) and (2.137) for AF® we have:

A,;orv) _ 4&;9"' )\ C

]/ 4" (20) co,qnp) _-'/ 3&") (co) cos o("?’
V s (20) cos 0P - |/ 8- (20) cos oo™

(2.138)
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or, muttiplying the numerator and denominator by erf"(m»cos%”’+-

4“V/89"«® cos8(™ and noting that according to (2.133)
® i") (20) cos® o) —-e('") () cost 6 = el (20) — ej (), (2.139)

we arrive at formula:

A&OW) =. - 3 43?3“ : x
R X [}/- a(J_“) (20) cos O;"P) +1{‘ ag) (20) €OS QSOtp)J
. . ll . - B .
. (2.140)

X — .
L [V s (20) cas i + " ¢ () ‘cos 6{9

The amplitude of the passing wave can be directly calculated from
(2.136) and (2.140).

Let us note, first of all, that if the amplitude of the passing
wave, as can be seen from (2.136), depends on the relationship of
dielectric constants ef2) and 2"(@) (when e{"(@w)=2{"(0) the wave of
nonlinear polarization has a resonance effect on the medium, and
stored effects are possible), the resonance term of the form

1
ei(20) — M)t in general, does not enter into expression (2.1“0).
) ( ) H ( ) 3

Using (2.140) andi (2.123a), it is possible to introduce the
"nonlinear" reflectivity of the quadratic medium R™), which char-
acterizes the relationship of energy fluxes of the incident wave of
basic radiation and "reflected" wave of the second harmonic.

R — V «0(20) costfr™ . | Efop (2.141)

ﬁ;')—(_@)— ces8{® . [EPI]! ]

lhe last circumstance can have a definite interest for the
creation of nonlinear optical devices using skin effects.
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In order of magnitude

R ~ [y AQ)]? (2.142)

For the crystal KDP X312 = 3‘10'9 CGSE (see [41]), and with a field of
'\'105 V/em the relative intensity of the second harmonic, appearing

on the border of the nonlinear medium, comprises '\:10"12 of the
intensity of the basic wave. For the crystal Gals x123 = 2.6'10_6

CGSE (see [180]) and under those same conditions R(H") x 10-6
Expression (2.140) permits analyzing the angular structure of the
"reflected" wave of the second harmonic; let us note only that in
the investigation with the help of (2.140) the dependence of Ay{m™’
on 6" should be considered a great dep:ndence of components of the
vector of nonlinear polarization sz on the angle of incidence of
the wave of the main frequency (see (2.129)).

.

For surface nonlinear interactions, in exactly the same way as
for the volume interactions, of course, the general energy relaticns
of the type (2.42)-(2.43) are fulfilled; however, for their deriva-
tion it is impossible to use the approximation of the assigned field.

Although the example examined in thils paragraph is one of the
simplest, it visually i1llustretzs the method of resolution of
problems on surface nonline¢ar interactjions in the approximation of
the assigned fleld. In the end, calculatidon of the field of
"reflected" waves on combination frequencies in the llinear medium is
reduced to the problem on radiation of the assligned ware of polariza-

., or in a more general case, P"“*™ | which propagates in the
nonlinear medium. Above we examined the case when the vector of
the nonlinear polarization is perpendicular to the incidence plane
(only one component T;EEP? was considered). For an analysis of the
general case, it follows to examine still the problem for which the
vector of nonlinear polarization lles in the incidence plane (P =0;
P s 0). In this case vectors ef™ and ef? also lie in the incidence
plane. Relationships between amplitudes A{L™ , Af"™ and Af”? can be set

i1f one wviere to use boundary conditions of the type (2.121).
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§ 6. Space-Time Analogy in the Theory
of Nonlinear Systems

The application of methods of approximation of the theory of
oscillations of nonlinear systems with concentrated constants to
the investigation of wave processes in nonlinear dispersive media
permits many nroblems on nonlinear waves to establish the time
problems-analogies in correspondence.

Actually, the truncated equations describing the propagation
ar.d interaction n of the unmodulated waves are the system n of
ordinary differential first-order equations for complex amplitudes.
A system of precisely the same type describes oscillations in a
weskly ncnlinear osclllatory system with n-degrees of freedom. Let
15 turn, for example, to the problem on the propagation of an
unmodulated wave in a linear dissipative medium, examined in § 2 of
this chapter. In accordance with (2.20) the change in the complex
amplitude 4 in space 1s described by the truncated equation:

A
%—‘O,A=0. where = — 2X0%0e (2.143)

A A
ek cos ks.cos s29

It 1s esasy to be convinced that precisely the same structure is
seen in the truncated equation describing the process of the change
in time of amplitude of free oscillations in the resonator. Actu-
ally, let us examine the equation of the linear oscillatory circuit

close to the conservative. The equation of such a circuit has the
form

4+22x4 oix=0, (2.1414)

If &~p' (u as previously the small parameter), the solution of
(2.144) in the first approximation can be sought in the form
s=A(u)expi of, Substituting this solution into (2.144) and rejecting

Lerms muz, we arrive at the equation:
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dA
- —%A=0, (2.145)

coinciding according to the formula with (2.143); the process of the
change with time of the amplitude of free oscillatinns in the reso-
nator close to the conservative occurs in exactly the same way as

the change in space of the amplitude of the harmonic wave propagating
in a weakly absorbing medivm.! Comparing (2.143) and (2.145), it

1s possible to escablish tne direct connection between variables and
parameters in problems — analogs. The independent variable ¢ in the
time problem corresponds to cocordinate z in space, frequency W — wave
number k, initial conditions in the time problem — boundary value
problems in space. The analogy can be widespread on nonuniform
problems: forced oscillations in the time problem correspond to
effectad side fields to forced waves (see formulas (2.92)-(2.86) in
space. What has been said pertains equally to nonlinear problems.
The boundary value problem on the generation of the second harmonic
in a dispersive medium, described by equations (2.39) when Wy = Wy =
= w and w3 = 2w, can be established in correspondence to the problem
on free oscillations in a two-circuit system, the resonators of which
are tuned to frequercies w and 2w and are connected by che nonlinear
reactive element. Let us note that the latter was examined as long
ago as in the 1930's by A. A. Whitt and G. S. Gorelik [136].

The list of nonlinear analog-problems can easily be expanded.

What has been said, however, denotes that in the theory of
nonlinear oscillations of systems with concentrated constants already
there are contained solutions of all problems appearing in the theory
of nonlinear waves in dispersive medla. First, nonlinear wave
problems in general are considerably more diverse than the oscilla-
tory (see below). But this is not the only matter. The mdst
interesting practically, in nonlinear optics, for example, are
boundary value problems. Thelr analogs are, in virtue of that

!Let us note that the space-time analogy for linear systems
was examined in works of P. Ye. Krasnushkin [210].
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mentioned above, problems on transition processes in systems with
concentrated constants. However, the independent interest of the
tatter, as a rule, is small and therefore in the theory of nonlinear
oscillations the main attention is given to forced osclllatiocns.

In connection with this it follows to indicate the distinction
between the energy relationships, which usually occur in the theory
of nonlinear waves in dielectrics [see, for example (2.43) and
(2.57)] and in the theory of nonlinear oscillations of systems with
reactive nonlinearity. In the last case usually we are interested
in the distribution of energy with respect to frequencies in con~-
ditions of statlonary forced oscillations; therefore, here relations
of the type (2.57) take place not for increases but for total
energles corresponding to different oscillations (see, for example,
(104], [107]). Distributed energies of forced osciilations in the
steady~state operation does not depend on initial condlitions. It

is necessary to consider also that stationary waves, the existence
of which appears possible with a special form of the selected
boundary conditions [see, for example (2.72)], are not of course,
aaalogs of tha stationary forced oscillations.

The role of the dispersion characteristic of the medlium, the
analysis of properties of which permits in a nonlinear spatial
problem determining waves essentlially participating in the process
of nonlinear interaction, in the temporal problem is played by the
resonance characteristic of the oscillatory system. Here it is
possible to be limited to calculation of oscillations of only those
frequencies for which the resistance of the osclllatory system is
not too small, i.e., for which the system reveals notlceable resonance
properties.

Within the bounds of the indicated space-~-time analogy it 1is
natural to treat the appearance of growing waves in the nonlinear
medium as “instability in space."! With this the regions of

'In the theory of plasma waves the term “convection instability"
is also accepted [135]; "instability with time" is then called
"absolute" instability.
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instability in space for the system of ordinary differential egua-
tions of the type, for example, of equations (2.60) can be found
with the help of the usual criter®a of stabllity, developed in detall
in the theory of oscillations. Such an approach proves to be very
effective, for example, in the theory of parametric amplifiers of

the traveling wave (see [133, 134], and also Chapter IV of this
book). From this point of view the parametric amplifier of the
traveling wave is, obviously, a spatial analog of the parametric
generator with concentrated constants. The space-time analogy can
appear useful in the cearch for new nonlinear effects in optics,
since 1t permits setting in conformity the nonlinear waveguide
analogy-systems with concentrated constants studied thoroughly in
radio physics. 1In proceeding in this way, it is possible to con-
struct, for example, a wave analog of the phenomenon of the forcing
of osclllations, which plays a very important role in radio engineer-
ing of syséems with concentrated constants. The wave analog of the
forecing is, obviously, the change in phase speed of the wave prop-
agating in the medium with dissipative nonlinearity, which 1s
connected with the effect on the medium of the external field.
Examples of a similar type can b2 multiplied: 1t 1s possible to
construct, in any case, theoretically, wave analogles of such
osclllatory phenomena as the mutual synchronlzation, asynchronous
interactions and so forth. At the same time, on the path of their
experimental realization considerable difficultlies can be encountered.
The use of the space-time analogy proves to be very useful not only
in examining the dynamic but also the statistical wave problems.

For example, problems on the influence of side fluctuating forces on
the course of nonlinear interactlions in dispersive media have

much in common with problems on the influence of fluctuations on
nonlinear oscillations in systems with concentrated constants. In
particular, in the investigation of equations of type (2.86) and
(2.91) for those cases when force I{t, r) is accldental, methods and
results of works on fluctuating phenomena in self-o:cllilation systems
with concentrated constants prove to be very useful (see, for example,
(137, 138, 56]).
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In conclusion one should once agaln stress that everything
wi.ich has been saild pevtained to wave problems on the propagation
and Interaction of unmodulated waves moving in one direction.

In the general case the nonlinear waveguide problems are much
more numerous than the oscillatory; the latter 1s connected with
the fact that in wavegulde problems there are two independent
variables (¢t and r), and independent variable r can be both increased
and decreused (in interactions both direct and backward waves can
take part).

As the simplest example of the problem, which does not have a
direct analog in the theory of osclllations of systems with con-
centrated constants, it is possible to indicate, for example, the
problen on the propagation of a modulated wave in slightly absorbing
linear medium [see equation (2.30)]. The indicated equation should
be solved with the boundary condition, set at z = ¢ and having the
form A (pt0)=As(nf), i.e., with the boundary condition dependent on
the small parameter. In the theory of free oscillations of systems
with concentrated constants such a situation is impossible.

§ 7. Generalized Truncated Equations and Laws
of Conservatlions for the Nonlinear
Medium with Temporal and
Spatial Dispersion!?

Although the truncated equations derived in §§ 2-3 of this
chapter permit solving the majority of problems appearing in the
electrodynamics of the weakly nonlinear dispersive medium, in
certain cases there is interest in their generalization in the case
of the medium with spatial dispersion and fields somewhat more than
that of the general form. Such generalization is the subject of
this sectlon.

We will assume that the medium is spatially uniform. This
means thav parameters entering into the expression for the vector

lYu., L. Klimontovich wrote § 7.
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of polarization of the medium do not depend on the coordinates.
Furthermore, just as in §§ 1-6 of Chapter I, we consider that
parameters of the medium clearly do not depend on time, i.e., a
temporal homogeneity takes place.

Under these conditions the expression for the vector of
electrical induction

D(c,8) =E(r, ) + 4nP(r, 1)

can be written in the form:

.

LDy, 0 = _gd“x Idr,e,!(txrl)ﬁ,(t — T —0)+
+§ dx, S dfzsdrljdr:hik (%1, %2, 1y, 1)E (=, 1—1) E (¢ — "1""":.7 -
0- - . Y I frae w0 Tae ° . '
r— fx — rg) + § drx J.df"f df‘ I df.x j_drg .';3"3 'x -
o . . M N ‘

Os101 (1 Ta, T3y Ty, Ty, T3) « Ej(f — %3, =0 Ep (f —~ T — T3, £~ Ty — 1)
Xﬂ@—ﬁ—%—%#—&fhéﬁk' ) (2.146)
From the twice repeated indices summation is assumed.

When Xw=0 and 6, =0, hence we will obtain the well-known
expression for the vector of induction of the linear medium [149].

Expressions given in the introduction of §§ 5-6 neglecting
the spatial dispersion, foliow from (2.146) under conditions

&)(%, 1) = £, (x)-8(r);
(¥, 0,0) = 1, 7Y §r)8(r) (2.147)

ete.
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There appears the question as to what measure expression
(2.146), correct for the spatial uniform medium, can be used for
crystals. In fact the crystals are not spatially uniform, since

ttice poilnts are equivalent to remaining points of the crystal.

Expressions (2.146) can be used for the crystal only in the
case of a weak spatial dispersion. This takes place if the wave-
length is much greater than the lattice constant a, i.e., a/A << 1.
For the optical range this condition is well fulfilled. (For more
detail on this see, for example, the survey of V. M. Agranovich
and V. L. Ginzburg [15%0]).

In the case of weak spatial dispersion, the tensor e,(ew) can
be presented in the form (see also [149]1-[150]):

& (0, k) = & (0) - dygp ke anpkiky (2.148)

Tensor Yiu¥ 1s different from zero only in the optically active
crystals. Conditions of symmetry of tensors &) viulw) and apdw)

are determined by relations resulting from the condition of symmetry
of the full tensor &;(w,K) (e, (), K)=¢, (0,—k)

& =8y YViu ="V Silx:= Cylpse

We will assume that the term, containing Yir has the same order of
magnitude as does the imaginary part of the tensor e w), 1.e., the
order u. Therefore, in i1t dissipation can be disregarded. Under
this condition tensor Yux is real.
Tensor 8&;(w, K) can be presented in the form:
8, (0, K) == &}, (@, K) + Ie}; (0, K),. (2.149)

where 8; and e - real and imaginary parts of the tensor e,

For the crystal
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8@, k) =§_s“,(o)) + oy bk e (0,K) =) ©,k);
&, (@, k) = ¢, (0) + v, (0) -, ~~ . (2.149a)

Below we will examine the general formulas correct for any
media; therefore, subsequently we will use formula (2.149), not
assuming that &; and e, are determined by formulas (2.149a).’

Let us note still that due to the smallness of the spatial
dispersion in crystals, it can be disregarded, in nonllinear terms

of formula (2.146), i.e., consider that tensors X and 6, depend
only on frequency arguments.

Instead of equation (2.2) for E, here we will use directly the
system of Mazwell equations:

‘=—l—.Q-D- s—“— 1 - —4 v
roth - by + ~ 1(r,?), dxv.l'l 9, ‘

1 aH -
rotE==--—‘—3‘—, divD-T'iuq(r,t)

(2.159)
(2.151)

I, q — Jdensities of side currents and charges.

In combination with expression (2.146), the system (2,150,
2.151) 1is closed.

In accordance with that said in §§ 1-2 of this chapter and
introduction, we will assume that the spatially temporal process 1is

characterized by rapid and slow changes of all functions, and we
willl present fields E and H 1n the form

E(r’_;)g E(y.t,pr,t,r); H(r,)= H(M' Pr't' 1), (2.152)

where u - small parameter, nt — rapid variables.

!Por the contemporary state of linear crystallopties, taking
into account spatial dispersion, see [213], [150], [214], [215].




Let us produce decomposition into the Fourier integral accord-
ing to varilables

B, ur. 1) = (W de 5‘ dKE (ut, pr, 0, K)e 7, | (2.153)

H(pt‘,pr t r)__g,;)T‘d"’ Sdk H(p!,p,r Q k) —b{wt— kr):.‘. (2.154)

In these formulas the Fourler-components are themselves slow
functions of coordinates and time. Such decompositions are expe-
dient, if spectral functions are different from zero only at
sufficiently great values of w and k, i.e., there should exist Wi
and k " which satisfy for example, conditions

JE . JE
oo (1, 7,0, K) > 225 . kmia > |2 (2.155)

Let us obtain equations for slowly changing functions E(w, pr, oK)
H(w, pr, @, k) (truncated equations). For this at first let us find
the expression for function D, pf,e, k)

Just as everywhere, in this book we will consider that non-
linear terms in expressions (2.146) have the order u, and we will
present D in the form of two parts

—p» (CH)]
D=D"+D™, (2.156)
which correspond to the linear and nonlinear parts.

Let us write functlons D(") and D(H”) in the form of (2.153).
Since the nonlinear terms have the order u, then in obtalining the
expression for D"™'(w, pr, o, k) correct to u we are not able to con-
sider in (2.146) the dependence of field E on slow variables. As
a result, from (2.1U46) we will obtain the following expression (in
order not to limit community let us hold arguments k at tensors x
and 8)
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D (e, pr, 0, K) = jdm dkx:m@sk o, k' ) ><

(m "
X Ej —a, k—k’)-E,(m' K')+

et 3dm'dk’dm'dk'e,m(w,k 8 'k')x-

(2np
X Eplo — ',k —K')-Eg(w —o*, K’ —k*)-E, (0" k) (2.157)
Here
Lin (0), k» ")" k')-
ﬂoj dv, ;f dty s deydtyyy . (41,%,1,,1) e (“'.*-."'—h'_h:) (2.158)

.

and similarly there can be obtalned the formula for ym.

In order to obtain the expression for D'(‘)'(u.t, ur, 0, k), we will
substitute into (2.146) decomposition (2.153) in functions of the
form: E; (g (f —v), .u(r—n1), 0, K), expand in series with respect to T
and ry and limit ourselves to linear terms. As a result we will
obtaln the following expression:

DpY (0,0 = (80,0 + 5L - 25

— 1% 2.kt 0,0 '_ (2.159)

Using expressions (2.157, 2.159), we will find the expression
for the Fourier-component of function aD(rt)/ot

S Ny oy

ey . .
. (.a—‘-)ﬂppr.-.k—wtm(l)()-*.[)( )H' ao i (,ur,0,K). (2.160)

Thus, in expression (2.160) we are limited only to terms ~p and
reject terms of a higher order of smallness with respect to u. As
was noted in § 2 of this chapter, rejected terms in certain cases
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can appear essential. The necessary refinements of the method of
successive approximatlions in these cases are analogous to those
developed in the theory of nonlinear oscillations (see [53], [541],
and also § 2 of this chapter, where these methods were used in the
conclusion of truncated equations of the anisotropic medium).

From (2.157, 2.159) in a zero and first approximation with
respect to p we will obtain the followling expression:

" [eD{® .
) =i 0 By T0 K (2.161)
apf" 0. .. 9 dy 9\,
(—&‘ )M.v-r.--t = (a-:;(m") o —a —a—;'— -;;-)E,(p,t pr,o0,K) 4
. o), (@, K)E, (t, pr, 0, K)— koD (ut, pr, 0, k. (2.162)

Let us note that expression (2.157) for D™ by changing the
variables and introduction with the help of the delta functions of
additional integrals can be written in a more convenient form:

Dt (0,k) = (TlsF f don o,y X o —03—03) - dk—Ky—ks) X

Xt (©, K, 0, Ka)-Ej (04, Ky) Ep (2, k;) + (2.163)

+ G 5 o, 001K, 0K KD (© — 0, —thy— 0 Ik —Ky—Ks—K5)X

X0 (0, K, 0 1 05, K3 4 Ky, 05, Ks) Ej (0,k,)- Ex{0,, k) Ef(05ks).

From this formula it follows that the integrand expressions are
different from zero only upon fulfillment of these conditions:

W= +a, K=k+k (2.164)
in quadratic and

© =0+ 0y @y K=k, +ky+ ks (2.165)
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in cubic terms. In quantum language these condltions express laws
of the conservation of energy and impulses of interacting quanta.

Now it 1s already easy to obtain equations for the slowly chang-
ing Fourier-component of intensities E and H.

In the zero approximation with respect to p from equations
(2.150, 2.151), considering (2.161), we find

[KH],~ — = &}, (0, KIE, kH=0; . (2.166)

(KEL;=—=H, k;e;E; =0, (2.167)

Equations of the first approximation can be written in the
following form .

a N dey E;
(o), = (o) Spp 0% 2B — D

out
'.+.m;,5, ‘A (2.168)
crotLm— 2L o (2.168a)
aD, Lot
(’T&!‘)‘“'p‘.‘k = 4ng (W, pr, o, fs); (2.169)
d .
a—“ﬂo,. N . ‘ (20170)

Here it 1s assumed that quantities I and g are of the order u.
Other possibilities are analyzed in Section 4.2 of th’s chapter.
Equations of the first approzimation permit obtaining the dispersion

equation and establishing the connection between vectors E (uf, pr,o,K)
and h ¢, wr, o, k),

From the first two equations (2.166, 2.167) we find:

[K[KE]) + 5oy = 0. (2.71)

If, just as above, we use the unit vector e along intensity E, then
from (2.71) there follows the equation
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[kel* + 2% eievey, =0, (2.172)

which connects the frequency w and vectors k and e.

For the isotropic medium tensor ey is determined only by one
vector k and therefore can be represented in the form (see, for
example, [149]):

8 @)= (8 — 2L e, 0,0+ e, (0, k),

i (2.173)

where 8, and &, — transverse and longitudinal dielectric constants.
| 9T transverse waves e.LKk, ¢ e,e,=¢, and from (2.172) the well-known
dispersion equation follows:

o's, (@, k) — % =0, (2.174)

For longitudinal waves ¢lk, and from (2.172) we {ind:
8y, k) =0 (2.175)

Let us examine in more detail ecuaticns of tne first approxima-
tion. First of all, we will write the law »f the conservation of
energy.! For this we will multiply equation (2.168) by Ef, and
the complex conjugate equation (2.169) by H¥ and subtract the second
from the first. Using equations (2.170) and the well-known vector
identity

div [AB] = Brot A—ArotB,

we will obtain equation (we omit parameter

%
N

lsee [38], [194], [218], [219], [233] on laws of conservation
in a linear anisotropic dispersive medium.
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— B, -' RelE®, | (2.176)

Let us introduce the designation for magnitude of the electro-
magnetic energy of the anisotropic dispersive medium, arrived by
given w and k.

uou,pr.m,k)=ml(ﬂ*'4-8,i-"§—;y—l£,)- (2.177)

The first two terms of the right side of equation (2.176)
determine the energy flow taking into account spatial dispersion;
the third one determines the change in energy due to the nonlinear
interaction; the fourth — thermal losses and the fifth — work of
the side current.

Using equations of zero approximation (2.166, 2.167), we will
obtain:

'__e R _.c .
H =—[KE]; [EH*]=-~ [E[KE*]]. (2.178)
These relation., permit excluding the magnetic field strength from

equation (2.176) and to writing expressions for energy and energy
flow in the form:

o 9 B _ 18 g 1B \
U= (S ikel+ 5 o 1001 o =3t i (2.179)
S, pr.m.k>=[-’ji(k—-e(ke»—w ;’k’ ] B (2.180)

To obtain the last expression in (2.179) equation (2.172) is used.
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From these formulas let us find the expression for group speed
in the anisotropic medium, which is determined by the relation

Ssvg U=t Us . (2.181)

D XYk —e (l:e))—-m';a'-‘- (e e,', e)
Vip =

. (20182)
3[ . ]

Using the last formula, it is possible to write the evident
expression for the beam vector s defined by formula (2.9).

Let us note that expression (2.182) for Vep can be obtained
airectly from equation (2.172). For this it is necessary to
differentiate this equation with respect to k and to solve the
equation obtained by such means with respect to Jw/d9k. Here we
obtain direct proof of the parallelism of vectors of energy flow
S and vector of group speed 3dw/dk (compare with the proof in [38]
Russian page U402).
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The beam vector s can be standardize, for example, in such a
manner so that the following condition is fulflilled:

ck
Sn=1, where ﬂ’—"'_";; (2.183)

(compare with formula (2.9). In the absence of spatial dispersion
the thus standardized beam vector can be recorded in the form

S==. k— e (ke) _ fe [ke]] (2.184)
bn—(ne)(ke) [ne] [ke]

The penultimate term member of the right side of equation
(2.176), which determines damping, can be presented in the form

~2y(0,k)-U, (2.185)

where y(0,K)— damping decrement in the anisotropic dispersive medium.
It is determined by expression

e, e, e T oteee
Y@, = = 1 g I =— L] _' . (2.186)
T Skl laeyoe]  pelatereye)

Let us examine certain speclal cases of formulas (2,182, 2.185)
for the group speed and damping decrement.

In the case of the isotropic mediup, tensor Eij is determined by
expression (2.173). Using this expression, for transverse waves
from (2.182, 2.186) we will obtain

"t - < 'i ORee, {0, %) . .
- Uk — i _. elme (o, k) -C
.v"=. Fy H Y"_‘a’ . (20187)
: 5?;'(“”’2"'; (@, %) - - é-‘—n-(mtRnJ_ (@, k))

Appropriate expressions for longitydinal waves have the form

3 -

——Reep(a,6) ! Lk
R L L L (2.188)
T e SRy

71




In deriving these expressions we used the dispersion equation
(2.175) for longitudinal waves.

Without spatial dispersion

23k 0

v]. =" » vl == U,
= A W
M(»’Ru )

(2.189)

Finally, in the absence of polarization, when ¢,=1, from (2.189) we

ck
find V,*p-—- T

Let us return now to equation (2.17€). Using designations (2.179,

2.180, 2.181, 2.186), let us write it in the form

o ad
ot + 7" (VrpVU) =

— 2@, k) U~ Im (D™ £y — RelIE". (2.190)

Let us examine the general properties of the right term of the

right side of this equation, which describes the nonlinear int_raction

of the waves. For simplicity we will examine the case of the
quadratic medium. However, general properties of the nonlinear
member established below remain accurate in general.

vector D™ is determined by expression (2.163). In this
expression it is possihble to use expressions for tensors Xi
and 6, neglecting the dlissinative members, since according to the
condition the actual dissipative terms of the order p and terms of
tue order u2 will oe disregarded. Therefore, tensors xﬂb@um.
which enter inte formula (2.163) for D™, possess the property:

X (@07, K, K = o3, (0, &"3 k,k)=

. , , (2.191)
= Xllk(“'"‘". —o, —k, —k ).
8 (@,0%, 0%, k, K, K") = e, 0,0% K k' K) =
= B (—0, —0', —0", —K, —K*, —K”). (2.192)
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Let us examine' the integral JIm(D""-E*)dodk . Leaving only
the quadratic term from (2.163) we will obtain:

e § Im O E) dodk = Lo Im [ doda’ du* dwak’ dic’x

(2n)s
XO((D—-@' —m')-b(k—k'-—k')xug(w.@”,k, k”)x
’ L XBOKEWK)ECK). (2.193)
Here and below instead of Oy 0, k;, k, in (2.163) we will

use designations o', 0 k, k’, k".

Let us replace in (2.193) variables of integration e, o/, 0°, k, k' k"
for — e, —o',—a",—k, —k’/,—k". We will use properties (2.191) of
the tensor (2.191) and consider that the Fourier-components possess
properties:

E*(0,K) = E(—0, —K). (2.194)

As a result we will obtain that the integral in (2.193) will turn
into a complex conjugate. The imaginary part of the complex
expression, which possesses property a+lb=a—ib, s equal to zero.
Thus we obtain the first important propert&lof the nonlinear term:

Im{D"™ E’dodk =0 (2.195)

Below it will be shown that this condition ensures the fulfillment
of the law of conservation of the number of gquanta in the nondissi-
pative medium.

Let us now prove the second property of the nonlinsar mewber:

fo D™ E dodk =0, (2.196)
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which ensures fulfillment of the law of conservation of electromagnetic
energy in the nondissipative medium.

For_the quadratic medium from (2.163) we obtain

B ) 9D E dudk = [ dodar do* dic i ak”

(@)t (2
XM(‘P—Q’—Q') .b(k_k’-k')xllk(m'.m' k! k,) X
XE;((D,k)'El-(ﬁ)’,k’)E‘(o)"'k")‘_ (2-197)

By means of replacement o’—ok'-k‘j+% We are convinced t 3t under
the integral in (2.197) it is possible to consider

Le (0, k, 07, K”) = 15 (0, K, 0, K). (2.198)

(Let us rcmember that frequency permutable relationships for tensors
A A
¥ and y colncide).

Let us consider the case when calculation of the spatial
dispersion is not essential. Here it 1s possible to use the result
of §1—6.

From formula (1.131) it follows that tensor X (v, 7') does not
change with replacement ofi—k =7, i.e.

L (6 7) =%y (7,7) (2.199)

Substituting this formula into the seceond expression (1.84),
we will obtain the useful equality:

Xapn (0, 0") = 24y (07, @), (2.200)

Let us make in (2.197) at first the replacement ©—+—©’, k—>—K"
and then i-sk Using formulas (2.194, 2.200, 2.191), we will obtain:
@ (@, 0) E} (0, k) -E; (o', K')-E, (0, K" =

= — 07y, (07, 0) E, (0%, k")-E, (o', K)- B} (0, k) =
- 0,0 B 0, K) E, (0, K)-Ey (0", K. (2.201)
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g Producing now replacement 0-»—', K+-k, and then -], we will

;o obtain by the same means

: |

F‘ ; mxm(m,o)')E;(n),k)El(m’,k')-E.(O)',k")-—-'.

| = — 0y (@' 0) E, (0", K) E} (0, K) E, (0", KO) =,

- = — 'y, (©,0) E} (0, k) E (', k) E, (0", K"). (2.202)
; . Using formulas (2.201, 2.202) and equality (2.198), we can

H record expression (2.197) in symmetrized form:

k<

5 () do dw’ d” dk dk’ dk"X

(2“)‘ 50D E'dodk= 3@n )::5 v’ dw

X (0—0' —a")d (o —0 — 0 (k—K — K1 (0,00X

X Ej (@, k)-E, (o, #)-E, (0", K'). (2.203)
E This expression is egual to zero, since

‘A

5’ 5 (m—um’—w”)a(m—m’—-m")=0.

In a similar way we can prove the correctness of equality
(2.196) and for the cubic nonlinearity. In order to generalize these
3 results on the case when calculation of spatial dispersion is

important, it is necessary to prove the accuracy of equality:

| Xur (0,6, K, K) = iy, (@, 0, K, ), (2.204)
%% which is a generalization of equality (2.200).

1

éf Condition (2.196) expresses the law of conservation of energy

§§ with nonlinear interactions. Let us stress that this equality is

j valid when in nonlinear terms it is possible to disregard the

é§ dissipation.

é Under those same conditions it is possible to prove the accuracy
% of equality:
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§ fk (D" E") dwdk =0, (2.205)

which expresses the law of conservation of momentum with nonlinear
interactions.

Let us prove this equality for the quadratic medium. For this
case, using (2.163), we will obtain:

| S X (D‘"" E) dodk= - Sdo) do’ do” d kdk’ dk" X
| X (k— k’-—-k')a(m-—m — ") 8 (k—K — K"} (@, 07) X
| : X E}(, k) E; (@, K) £, (6", K). (2.206)

Using properties (2.200) of tensor Xux» we can record for the
medium without spatial dispersion of equalities analogous to
(2.201, 2.202). This permits presenting expression (2.206) in
f symmetrized form: '

(n:l). * = 1 ’ ” ’ ” N/
[k (@*.E) dodk T [ dodo dat i dic dic” %

X 8((0 —_—w _m”).k.a(k —k - k-) X ((1), k,(l)”, k').
E*(o; k)-E0', k) Ep(0”, k). (2.207)

Hence, considering that

(k—K —k)-8(k —k’ —Kk")=0,

we arrive at the equality {2.205), i.e., to the law of the conservation
of momentum with nonlinear interactions. For generalization in the
case of the dispersive medium, Lt 1s necessary to prove equallty

‘ (2.204),

Let us return to equation (2.190). Let us introduce the function

.N(pt,pr,mk)—_—%*;:_;‘:”_'ﬁ. (2.208)
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which is the generalication on a nonstationary and nonuniform case
of the function, which determines the average number of quanta with
s given o, K.

L;‘g | We will multiply equation (2.190) consecutively by 6,1, Ko
e and integrate with respect to , k. Using the desilgnation (2.208)
and using properties (2.195, 2.196, 2.205) of the nonlinear term
3 l in equation (2.190), we will obtain three equations:

a 4 0 - , oo
-&-judmdk-;- ;Sv,,,Ndmdk = 2j‘y(m, k) Ndo dk

1 (R o (2.209)
- . (2:!)‘ he
& 2 j'mNdmdk-z- —jv,,,nmNdodk—--Sy(m,k)nmzvdmdk—
| IE® do dk. . (2.210)
<l (2«) o | Re ;
| j'amvdmdk+ 2 j‘ v,,,nkNdmdk-—-—-? 5 v(,K) nkNdmdk—-

i
- X RelES 2.211
" (2«)'3 X Re IE* do dk. ( )
3 l These equations constitute, the equation of balance of the

RS

number of quanta, energy of quanta, momentum of quanta respectively.

T

It is possible to write a fourth equation for the angular
) momentum

R AV LY

§ [rnk] N.do dk

e

F‘ If the medium is nondissipative, i.e., ¥ =0 and the external
current is equal to zero, then equations (2.209-2.211) express three

! . laws of conservation: numbers of quanta, energy and momentum.

If, furthermore, function N does not depend on coordinates,
then from (2.209-2.211) we obtain three laws of conservation:

et

posrider gt ot i e etioni it ot ey

) N do dk = const; fhe Ndodk = const;

fakN do dk = const, (2.212)

I 3 17




If, conversely, function N dces not depend on time, and the
change in space occurs only in a direction of the unit vector 20> then
from equations (2.209-2.211) there are three laws of conservation
of flows of quanta in the direction 24

Expressions for the rlow of the number of quanta and energy
of quanta have the form

=1 (xS = .
5z,v,,~dmdk_ ot | o dodk = const; (2.213)

=1 =
jflmzovadmdk = (2")‘ Zos d(l) d!‘ = cOl‘lSt. ( 2 . 21[;)

Vector S is determined by expression (2.180). Neglecting the
spatial dispersion S==f—RqEH‘], expressions (2.213, 2.214) turn into
H4
EH* —
Rejﬁ—l-w——]dmdk=const, ReSzolEH‘]dmdk— const (2.215)

Let us examine in more detail the equation (2.211). When y=/=0
ve will write it in the form

2 C ok, Ndodp = — 2
m‘fnk,Ndmdr..—;s,FO._ (2.216)

The tensor of stresses sij is determined by expression

s,,=5k,:if-dm&k =fnk,v,.JNdchk. (2.217)

Neglecting the spatial dispersion

€ (kiRe[EH*),
Sy o) j " do dk,
when elk. :
S, = 0 (ki
0= (@) P |E Bdwdk.
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Let us clarify the condition under which equation (2.37) can
be obtained. For this with the help of equations of aero
approximation we will exclude H from equations (2.169, 2.170). As
a result we will obtain equations for complex amplitudes E:@Lﬁnhhkn

m'e,,"—d":i—%(rot [KE] + [k rotsj)-m".%/% -

=—me;,'El+ io D" —4xl, . ' (2.21.8)

1
® 0

In this equation we multiply scalarly by E;. take the real part
and use designations (2.179-2.182), then we will obtaln equation
(2.190). Here the vector identity (2.21) is used.

In equations (2.218) D™ 4is determined by expression (2.16%).
Due to the nonlinearity waves with various w and k are linked. 'There-
fore, equations (2.218) actually represent an infinite system of
integrodifferential equations for amplitudes Ei with different w and
k or for an infinite number of waves. It is essentlial, however that
under certain conditions the solution of equations (2.218) can be
presented in the form of the sum of a small number of waves.

Let us consider the case of quadratic nonlinearity. Let us
assume that function E;(uf,pr,0,k) 1is different from zero only in
three points of the four-dimensional space w, k, connected by
conditions (2.33, 34)

“’1+‘{7:’=‘°a; K+ k =k, (2.219)
Function E (#,ur,0,k) can be presented in the form

E=(@n) (A8 (0 —0)-8 (k—K,) + Apd (0 — ) -d(k —k;)+
. + Ay 8 0—u)-d(k—Kk,)) (2.220)

Let us substitute this expression into equation (2.218). We
will assume that value w, k in (2.218) is close to wy, ky. Here

19
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values oy, K; Ky, K3 are such that

Yoks Vi M3
m.';"‘”a»?.v \'p; k."‘kg»"_u—"'o ""3__’_

. m.’!

aB=1,23 ap.

(2.221)

Let us integrate with respect to w, k over a small region surrounding
point @, ks As a result we will obtain the following equation:

— (‘°t [y Agy) + [KorotAg)) —
2A
— 0y —a:i' ’%f‘l‘ =—0, “u Ai(a) + io, | xuk(“)a ka“’z K;)X
X ‘m» 2 ‘*‘ Xie ("’a' ky @, kl) A A} (2.222)

Here I=0,

Let us introduce the unit vector along Ay(Aj,=eyAy) multiply
equation (2.222) by é€y; . and use property (2.198).

- (“’a"(a)lu"(a)/) +2 . o [& "“3]]

L) 60:
O o a,, (et ‘(3)1)_"“-"’5‘(3): &y ey Aat
+2“"31€m(“’3v 3 Oy k?) e(ane(l);e(zuA Az (2.223)

-

e write this equation neglecting the spatial dispersion. From

formulas (2.182) in this case it follows that
-1 dwt . 2t \{ 23
?a—.e, e, 8= - [e [ke]] -;:: = e [e [kc]] S,

Using this, we will obtain the following equation:

2
[es [ke,]}s %+ & [kea]] %4 —"—ﬁ eontiton At

2
+ ";?" Xy (@30 ©3) ’(a)leu)l‘mkAx A (2.221)
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E ‘ This equation coincides with the third equation (2.37). In
2|
: comparing them, it follows to consider that

. A .)g ) . l )
3 €126 = oo Con tulon’ p=;7e X (O3902) 2y S

The equation for A2 is obtained from (2.224) by replacement of

03—+ —@y Ks>—Ky2-+3,i~k With such replacement, according to (2.200,
2.191) function

T

oA SR

AT

’ (2.225)
% Xope (@20 03) €1 €1y Cenn

does not change. Furthermore, 4,(—v, k)= 4;(0, k).
In order to obtain equation for Al’ it 1s necessary to use

equality (2.198) and produce replacement of oy Ks+—a,—K;, 31, i—j.
3 With such replacement function (2.225) again remains constant.

If one were to substitute expression (2.220) in laws of conser-
vation, then we will obtain corresponding expressions in the

approximation of three waves. In particular, from (2.214) (2.4l)
follows.

L o e

T

For cubi: nonlinearity instead of (2.220), in general, it
is necessary to use a combination of four waves, the frequencies
and wave numbers of which satlsfy conditions

ppaa iy )

2

T

054 @y 03 = 0 Ky + Ka+ Ky = K, (2.226)

and (2.221).

DIrkae | s f0eiNR st

[

. It is essential that conditions (2,226) can be satisfied by
two waves 1if

T Ty T o

8, = @y i= 0y = 0 0 = 30; k1=ka=ka==k:kl4=3k.

AR
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It is necessary to remember that functions Ai should satisfy
equations of zero approximation (they are amplitudes of natural
waves of the linear medium). At the same time, in the presence of
dispersicn conditions (2.219) and (2.226) for natural waves cannot
be fulfilled; small deviations from conditiovns (2.,219) and (2.226)
can be considered by means of the introduction of "vectors of
detuning" Aj~p; Ay~p; As~p (see also §8 3-U4 of this chapter). Let
us note also that the presentation of the field in the form of
superposition of harmonic waves (2.220) can be replaced by a more
general representation in the form of the sum of wave packets;
here § — function in (2.220) should be replaced by functions of
finite width.

As was shown in the introduction, in those cases when the
aproximation of the solution by a small number of waves is unsatis-
factory, sometimes 1t is more convenient to use another extreme

approximation, which consists in the full disregard of the dispersion.

In this case instead of expressicns (2.146, 2.148) we have

D‘(I‘,t) = eIIEJ("' ’)+Xuk5,(f'f)'5n(f.f) -
+ OymE (e, 8) Ex(r, ) E(r,8). (2.227)

Here eij’ Yijk’ eijkl — constants of the tensor.

Intensities of fields will again be presented in the form of
(?2.152). Equations of zero approximation have the form

"1 apW
rot.-E=-—-—l -a—l—{-, dive D™ =0
c '
and represent linear eguations of the anlsotrople medium with the
tensor g, ;.
1J

82




T

o i< GhhrA

[NV NI

1 ap® | api -
m’wH:T'm"F T—;,""'i-‘cil; div H=0;

1 oH \ ‘
ot E=— — oy div, DWW 4 diy D) = 4igg,

(2.229)

From equations (2.228) it follows that the dependence on rapid
variables enters only into combustions f—ver (see the introduction).

From (2.228, 2.229) it is possible to obtain in the corresponding
approximation telegraph equations, which were used in work [55]
for the description of shock waves in electrical lines.
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CHAPTER IV

PARAMETRIC EFFECTS IN OPTICS

§ 1. TIntroduction

Disturbance of the principle of superposition in a nonlinear
medium leads, as was shown in Chapter II, to interactions of waves
of different frequencies. An important zlasg of such interactions
1s the parametric interactions (see § U4 of Chapter II) appearing in

electromagnetic wave — so-called pumping.

Parametric wave interactions were repeatedly observed in the
range of decimeter and centimeter radio waves (see, for example,
experimental works [20, 151-153]). Below we will examine peculiarities
of parametric interactions in reference to optics, where in this
chapter the main attention will be given to interactions for which the
frequency of pumping and freguency of interacting waves wy are either
comparable, w, v wy or W, > Wy - The result of such interactions,
as wWasS shown in § 4 of Chapter II, can be the amplification of
parametrically interacting waves; we will analyze parametric inter-
a .icns with W, << oy (modulation of electromagpetic waves in
nonlinear media in Chapter V.
In this chapter the field in the nonliinear medium will be written
in the form

E{1)= C.A.(lu‘j e;(p {(0yf —%k, 1)+ % X
Iwel

TN
X e A (ur)exp i(o,f — ki) =E,+ EE,.

leat

84

o i s e e e [N ISP -~

U — m———— =




‘he character of the interaction of waves EZ in the medium,
excited by an intense wave of pumping EH, is determined by nonlinear
and dispersion properties of the medium and also by the relations.. p
of amplitudes AZ and AH. Here one should pay attention to the fact
that in the presence of an intense wave of pumping not only waves
of the field (through electron or ionic oscillations possessing
f ) dipole moments, different from zero, see Chapter I) dipole moments,
f[ but also waves of field and completely symmetric oscillations of
f' ' molecules of the medium not possessing a dipole moment (one-sided
t
1

LR - SRS S e

in effect of such oscillations on the fleld of the light wave,
"passive" combination scattering was discovered in the 1930's
by L. I. Mandel'shtam and G. S. Landsberg a..d Raman [154-155]),
(« and electromagnetic and acoustic waves ete,

o T TS F

<X

L In accordance with what has been said, in this chapter we will
;3 examine separately parametric interactions of two types. We will
%E subsequently call "nonresonant" the parametric interactions
appear.ng in the medium, the nonlinear properties of which are
described by equations of the form (1.17a) or (1.41a). (Here

?! frequencies of interacting waves can be changed in rather wide

b limits; the possibility of the appearance of accumulating effects
is determined by dispersion properties of the medium). Conversely,
parametric effects appearing with the interaction of completely
symmetric oscillations of molecules (freguency Qo) and oscillations
with a dipole moment different from zero have a highly marked

resonance character — the frequency 20 is fixed and is the parameter
' of the medium.

et TR

AL e e b

e K e e M

v AW,

The theory of parametric intgractions in which acoustic wave
ﬁ‘ . participate is analogous to the theory of "»- pesonant" electro-
magnetic interactions.

! § 2, Nonresonant Parametric Amplification
! of Traveling Waves in a Quadratic Medium

Within the bounds of the three-frequency interaction, as was
; shown in § 4 of Chapter II, two parametric effects are possible:
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1. Parametric amplification of two weak waves with frequencies

@y <} g == QO (4.1)

{
|
!
!
I

(so~called parametric amplification with high-frequency pumping).

2. Parametric conversion of energy of weak waves with frequencies
Wy and Wy, which satisfy the relation:

e’

W+ 0, =0y (4.2)

The number of parametric effects in the quadratic medium can be
considerably expandeu if its dispersion properties allow consecutive
three-frequency interactions. Taking into account, for example, two

o

A consecutive three-frequency interactions, one should examine the
2 interaction of waves with frequencies Wys W, w3 and Wy 5 which
; satisfy relation

Gy @3 = 0y} 0y + 0y =03 05+ 0, =@ (4.3)

3

!
1 (further we will be convinced that (4.3) is one of the possible

’ variants of parametric amplification with low-frequency pumping).

|
.;‘ ’ Let us turn to a more detailed investigation of the enumerated
effects.

2.1. Parametric Amplification
b | with High-Frequency Pumping

Stored interactions of the type (4.1) can be realized, obviously,
in media allowing coherent generating of the second harmonic (see
§ 2 of Chapter III). In a uniaxial crystal of the KDP or ADP type,
pumping should excite the extraordinary wave, and oscillations of
frequencies Wy and Wy (here they will be called also frequency of
3 the signal w, = w, and difference frequency Wy, & wp) should excite

e e = o oo <o A e et e e

(5 e e

.
12 I 3 €
e et et < i o o
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ordinary waves., At the assigned frequencies w5 wp, and w, the fixed
direction can be found, in which there is carried out one-dimensioral
coherent interaction of the type (U4.1) (for such interaction U2=Up— )

Fig. 4-1 shows the method of graphic determination of the
direction of synchronism in a uniaxial crystal. For 60 (compare

(3.8) we have
6,= arc sin [_( K+ 8) 17 "‘J ayl”?
[,,:]-2_ [n; 2 .

If the frequency and direction of the wave vector of pumping
are fixed, the obtaining of considerable coherent lengilhs with a

frequency shift w, can be attained due to the use of two-dimensional
interactions. The truncated equations, which describe parametric
amplification with high-frequency pumping, were already derived in
Chapter TI.

12 ! . Fig. 4-1. Determination of
the direction in which one-
dimensional parametric
amplification with high-
frequency pumping occurs. In
the first quadrant of plane
z', x' secticns of surfaces

of wave numbers ki, kg (solid

circumferences) and the section
ki. The point of intersection

of the circumference of the

radius ki + kJ (dashed line)
o with curve ki (8) determines

the direction of the synchronism.
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Considering in (2.39) A3 = A, = const and passing to the real
amplitudes and phases [see (3.19)], we obtain the equation of the
form (in contrast to (2.39) we consider here damping in the medium)

%+,,1A_A,sin_o)'+bl&=°: | (4.4a)
..%?+vdﬁﬁm¢+mﬂ=% (4.4p)
40 Ay A =0
| e A+ (o 2oy Acos® =0, (4.he)

Here ¢ = ¢l + ¢2, parameters o,, 055 61, 62 and A have the same
meaning as analogous parameters introduced in Chapter III [see
formulas (3.23)-(3.24); (3.44)].

Equations (4.4) must be solved with boundary conditions, set
when z = 0.

4O = A 4,0)=Ai; ©0) - 0, (4.4

As was shown in Chapter II, for the special case 4 = 61 = 62 =

= 0 equations (4.4) allow the existence of waves by growing

exponentially in space. System (4.4) can be unstable in space. In
order to determine regions of instability in general A ¥ 0; 61 # 0

and 62 # 0 we will use the usual procedure cf investigation on the

stability of systems of the third order developed in the theory of

oscillations. Introducing small variations of amplitudes A1,2 and

phases ¢

A=Apta; A=Ap+ta; ©=0+4, (4.5)

substituting (4.5) into equation (#4.4), expanding the right sides of
, equations in Taylor series with respect to small Op5 On, Y and being
limited to terms of the first order of smallness, a system of three
differential first-order equations for Uy Oy and Y. Calculating
coefficients of the characteristic equation of this system and using

81




TR A s e

T

R ST N s

7

Feand s

Ll A BRI

TR,

EAR Tl e Ch bl AN

T
T R S T b

2N

Ixta-co]

RO IDRSSVEIORESE SRV VS

the criterion Routh~Hurwitz [54], we will obtain the conditions of

parametric amplification of traveling waves in a quadratic medium
with high-frequency pumplng:

]
lAl<(6;+o,)l/i"—6‘-:fr‘l-1. (4.6)

The graphic image of regions of amplificaticn (4.6) is given

on Fig. U4-2!, From (U4.6) it is clear that parametric amplification

in general is impossible with an amplitude of pumping smaller than
the threshold value:

a8 _ (010 e1) (¢4 0res)

A =, )
nop)imo - 610y ' (esp ™) (eap ™) w109

(4.7}

Fig. 4-2. Regions of parametric
amplification of traveling
waves in a quadratic medium
with high-frequency pumping

// / / /
/ (region pof "instability in
space"): shaded is the region
\ / of instability when §, , # 0.
. 422? s
A

With a growth in [A| the threshold value of the amplitude of
pumping increases. The obtaining of analytic formulas for the
amplitude and phases of growing waves. in general, when A ¥ 0,

61 # 0 and 62 # 0, prove to be very laborious.

'Tet us note that condition (4.6) has the same form as that
condition of instability of a parametrically excited oscillatory
circult known in the theory of oscillations (see [147]-[148]).
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For A = 61 = 62 = 0 the sclution of system (U4.4) has the form
(see also (2.62))

dn®=+ 1; ' (4.8a)
A= ae e+ bxe“r“; (4.8b)
Ax(2) = ayd™ 1 bpe™™, (4.8c)

I“ - / (2“)2 m? mg Aa ( el P °'n""’:) (22 p "“u—‘”l) . ( u . Sd)

A A A A
cth; cOs ky3,-COS 8329+ kg + COS Ky83: COS $22Z¢

Constants as, bl’ a, and b2 can be determined with the help of
boundary conditions. The most typical in the problem on parametric
amplification are boundary conditions where only one of the
amplitudes AlO and A20 is different from zero; in the medium with
variable parameters the signal is introduced from without, and the
wave necessary for amplification of the difference frequency appears
already inside the medium. When A, # 03 Ay,g = 0 from (4.8) we have:

. Ay (2) = AyyechTy2; (L.9a)
2k, cosk.'s,-cos s
A D=4, L j\" = "Az' shlyz (4.9b)
@} ky-cos ky'8,-c0s 3, 7, )

(see Fig. U4-3).

From (4.8) it follows that the factor of accretion depends on
the frequency of the signal as le~ofo,—vJ). The last expression
reaches a maximum whenok==%%—-, and such conditions of the parametric
amplifier can be called degenerated. With the departure of W, from %f,
rO decreases, and when ©,=0; v, the parametric amplification in the
examined approximation in general, vanishes (let us recall that the
above-cited analysis is carried out with the help of truncated
equations of the first approximation). It is obvious, in reality,
that the frequency range in which there is parametric amplification
proves to be considerably smaller and is determined, in tkre first

place, by linear dispersion characteristics of the medium. (Formula

90

e b smt Al et A e o




- N W

i N
e

Fig. 4-3. Graphs of the change

10
im‘} in space of amplitudes of the
signal Ay (z) and difference
8 frequency A2 (z) for boundary
7 / i ; =
g conditions Alo # 03 A20 0.
§ Plotted along the axis of the _ A
/ ordinates are given amplitudesAﬁ=7L;
5 10
A/ ~ A * Wik, cos Kis cos Sate
4 Ax=7; = L
’ y N agkl cos ki3, cos 8,2,
/4 ) )
3 VAT . . Along the axis of the abscissas
5 // 3 ~
< ’ ‘ 2=T2z
1 el
g
f 2 3

(4.8), (4.9) pertain to the case A = 0).

The solution to equations (4.U4) is when A = 0, but losses
different from zero can be obtained with the help of a change in
variables (3.52) useful in the case 6, = 8, = 8.

For the case 8z << 1 most interesting in practice, calculation
of losses 1s reduced to replacement of the parameter o. accretion
FO by

Iy =T,—a.
When A # 0 the effectiveness of the parametric interacticon i

on is

determined by parameter 5==2;; (compare Chapter III); when 4 > 1
"

interaction practically vanishes.
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2.2. Parametric Conversion of Frequency

The interaction of (4.2) is described by equations (2.66)-(2.67),

derived in Chapter II. As was already indicated in Chapter II, those
equations do not have exponentially growing sclutions. The
interaction of waves of frequencies wq and Wy = 0 + Wy has a
character of spatial beats. In order to calculate the form of the

.pratial beats, we will use the boundary conditions. Let us assume
that

A0, A5 ==0, (4.11)

According to (2.69) we have: (here and further, instead of
designations of equations (2.66) and (2.67), we use designations
accepted in this chapter) '

A,(z)-.ale +b e"""" g (4.12)
A 2) == __C 2k, cOs klil €os k;zq F iIr2 b —irz
S( ) —-———%ml(e s ) (618 18 ) (u.l3)

With boundary conditions (4.11), from (4.13) we have a, = b, and,

1 1
consequently,

A(2)=A;pcosT, 2; (4.1ba)
2 & cosk, s cos sAzo’
Ag(Z):A” e ) 15 t -§in ez, )
. - A A (4.140)
wy kg cosky 5,083, 2,

Considering that Ai are amplitudes of the electrical field and
using (2.42), for energy flows along the z axis we have

. ' A A
Su= [El;] z, = (A';’o < &y cosk,s, coss, z.,)cos Toz; (4.15a)

Sy = [E,H,] .z.. = (A2 L2 cos kis, cos s,z.,) sinTy 2. (4.15b)
i
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Whence

Sisuaee _ @1 (4.16)
Siguaxc W

Thus, for the interaction (4.2) the energy periodically passes
from the wave of frequency wy to the wave of frequency Wy and back
(see Fig. U4-U4). Here the total energy flow

(E\Hy] 2, - [EqH;] 2o+ const.

Aif2), Ryl '
20

20}

10

0

T Lz
Fig. 4-4, Graphs of the change in space
of amplitudes A;(z)——— A,(f)m-’-‘-'— for a
0

parametric interaction of the form
01 + 0y = 0y; ky+k,=ky With boundary conditions
A¥0; Ax=0,

In those cases when the energy passes from the wave of the
smaller frequency to a wave of greater frequency, the greater the
pumping accomplishes positive work, the larger the ratio %: [see
(4.16)]. With reverse transition, on the contrary, the wave of
pumping atsorbs par+t of the energy — it accomplishes negative work.
Therefore, an interaction of the type (4.2) can be used in nonlinear
optics for amplification with simultaneous conversion of the

frequency upwards.

Thus, just as for amplification wlith high-frequency pumping,
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the conditlon of synchronism for the examined interaction can be
carried out in a uniaxial crystal. Here waves at frequencles wy
and o, — extraordinary (see also Fig. 4-1).

2.3. On Parametric Ampliflilcation
with Low-Frequency Pumplng

For an interaction of the form (4.3) the field in the medium
should be presented in the form

- 4

E =eAexpi(o,f—kr)+ Eed (pur)expilot—Kkr)=
y it
: 4

= SE . o

E+EE (.17}

For simplicity we will consider also that together with (4.3)
conditions of synchronism of the form

K; + ks =k,; k; + Kk, =k;; k;+k, =k, (h.18)
are fulfilled.
Then, disregarding losses in the medium, for complex amplitudes

Al‘Au we will obtain the ftruncated eguations

A A 2% o Aw, .
k,cosk,s,coss,zo%.}- x%:;m;(elx W ‘e“%)A“A?+
v A - R
+iZat{e1" e e )44 =0; (4.192)

A A dA Lox A .
b, C0S KaS; COS $,20 — -+ i =5 0] ( e,1 " e, e,) A A+

A--—. L) “
+ig-c’:—w§(e21 s -e‘eﬂ)A4A,==0; (_li.l9b)
A A A,
k,cosk,s.coss,zo‘%--{- igc’:—wg(e.,x wte euc,)A“A, =0; (4.19¢c)
A A . A
k‘cosk‘s.cpss‘zo% + '%“'3(‘42 .haelez)A‘Az=0. (h.19d)
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In accordance with what has been said in Chapter II solution to
the system (4.19) can be represented in the form

A(p)=A explz, [=1,23,4. (4.20)

Substituting (4.20) into (4.19), we grrive at the dispersion
equation of the fourth order for the propagation constant [.
Numerical analysis of the dispersion equasion (see, for example
[60]) shows that the purely exponential accretion of amplitudes
Al and Au proves to be ilmpossible; the interaction of the waves has

a character of spatial beals, and the amplitudes of maxima are
increased with an increase in z.

The appearance of the exponential by growing waves with
consecutive three-frequency interactions is possible if dispersion
properties of the medium allow only the fulfiliment of the first two
equalities of (4,18) ~ only one of the waves “sum" frequencies
w3 and w, can coherently interact with the remaining waves. In
order to be convinced in this, let us assume in (4.19) AH = 0.

Then system (4.19) can be presented in the form (the amplitude

of the wave of pumping, not limiting the community, can be conslidered
real)

M , L] .
S ti(aAh+od)=0 (4.21a)
%—id,fh:O; (M.glb)

L floyay=0;

o, 2:u.>,(exu se e,)A gt N 2::(»,( ‘x: ne,e)/i

%k, O3 Izm cos s.zo : 3k, cos k;s, €OS $;%

m{;’(e 1 “1e e ) A, gy 2no.\§(e3?(w..+~xencl).4"

A A
c?ks cos k,s; cOs s,zo ‘ c3ks O3 k32 COS 2,20

.

Differentiating (4.21a) with respect to z and substituting into the
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obtained expression (4.21b) and (4.2lc), we arrive at the differentiul
second-order equation for Al:

A ’ . 2¢
-—d‘-’-‘- =(0] 0y —010)A, (4.22)

1 mn
and, consequently, when 00, > 0405 the solution of (4.22) has the

form

4.023)
A =ae™ + bye " ( )

Substituting (4.23) into (4.21c¢), we are convinced that the wave of
fiy squency w., exceeding the frequency of pumping grows exponentially.

The unbounded accretion of amplitudes of the parametrically interactiis:

waves, of course, cannot take place; in the quadratic medium
limitation of the amplitude (saturation of the parametric amplirfier
of the traveling wave) occurs owing to the reverse reaction of
growing waves on the wave of pumping (let us remember that formulas
(4.9) (4.23) are obtained in the approximation of the assigned fi-=ld).
Let us turn to the investigation of the effects of saturatic.; the
greatest interest in such investigation is for conditions c¢f
amplification with high-frequency pumping.

§ 3. Effects of Saturati.n with Parametric Amplification
of Traveling Waves in a Quadratic Medium.
A Tunable Parametric Light Generator

3.1. Conditions of Saturation of an Amplifier
with High-Frequency Pumping

To investigate the effects of saturation in an amplifier with
high-frequency pumping, besildes equations one should consider (4.4)
also equations describing the change in amplitude and phase of the
wave of pumping. Truncated equations for real amplitudes and
phases, which completely describe the three-frequency interaction
in a guadratic medium, have the form:

-‘-‘-:—z'--}-a,A.A.sinmq-&xA,:O; (4.24a)
%-{-G,AXA.sino-k 84, =0 (4.24b)
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‘%‘-—U,A,A,sinm+b,A,=0; (4.2lc)
.- I. A A
%+A+(G; A::" + oy A;f — 03 ;")COS(D——:O. (4.244d)

Here the meaning of parameters Ty5 055 03, 61, 62, §, and A 1is
conventionzl, and ¢ = ¢l + ¢2 - ¢,,. Systen (4.24) in general can

be solved only numerically; when 61 = 62 = 63 = 6 (in particular,

§ = 0) the equations possess the first two integrals (see (2.43)

and (2.43a) of § 3 of Chapter III): using the first integrals,

it is possible to exclude, for example, variables A2 and A3 and obtain

an equation describing the behavior of phase trajectories on the
plane Ai, $:

=fIA,®,4). (h.25)

x|

We will not conduct detailed analysis of (4.25) here: it basically
is analegous to that conducted in & 3 of Chapter III and is

carried out in worx [157). Here we will 1limit ourselves to con-
sideration of the simplest A = 0 and § = 0 for which the obtaining
of analytic relations prove to be possibie (see also [158]). We

will consider that when z 0

'Al(o):AlO; A3(0)=0, Au(0)=Ano; ‘D(O)m(bo'—"-—‘-;— . (Ll . 26)

Motion with boundary conditions (4.26) is obviously the motion along
the separatrix (see Chapter I1II), and therefore sin ¢ = £ 1; cos ¢ =
= 0. From equations (4.24a, b) in examined case we have:

. _d_/h__= 03 As
dA, T

and, using (4.26),

A§=:—:A§+A}’°. (4.27)
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Similary we have
A v
_3='-;f4$+A%: (4.28)

o
K= — 2N (A2 AL) + 4, (4.29)

Substituting (42.7)-(4.28) iito (4.24b), we obtain:

S S ~ —
= [ ) (2 a4 )] (- 30)

* (3£
Introducing designations w'=-ﬁf4$;v%=-§fA% and integrating (4.3,
we obtain:

A,

) . __dAs -
5»’(%—&3)@*—4%) T ja e

Introducing a new varlable w?—4] =w?? the integral in the left
part of (l4.31) can be reduced to an elliptic integral of the first
kind. Then instead of (4.31) we have:

1 . dy )
("‘*‘U')"'j Y (1 =g {1~k y3) Vo9 z. ( b, 32)
1

A . R |
s w i io e T 4,32
p = ae (H— . A.’n) (4.33)

Turning the elliptic integral, it is possible to arrive, as is
known, at the Jacobl elliptic functions.

From (4.32) for A, we have
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A,(;) = M—"A.Q cn (K +

where

Pﬂ'lt‘h

K= dy
V—yi—ay)

0,7

o).

(4.34a)

Using (4.34a), formulas describing the change in space of amplitude:

Al and A3 can be obtained;

A(d) = =

- — dn (K + Yoo "‘ % A,‘,z]

A=A sn(K+ Yais, ~——2A4, z)

Using (4.34),
in power fluxes along the z axis:

(4,30

(h.3he,

it is possible to construct graphs of the chunge

s‘l""‘_[ElH-l]z.O; Sy=[E;Hj)z; S, =[E, H, ]z,.

In Fig. 4-5 such graphs are constructed for boundary conditions

(4.26),

From the given curves 1t follows that the interaction of

waves in the examined case has a cvnaracter of spatial beats; the

exponential growth of amplitudes A,, A, at A

a maximum and then start to decreasc

wave of pumping. The period of spatial beats

0'_'_' Us O3 A,.q !

and maximum power amplification

slllxc o S
Shaxe g Suo.
. Su t  Si

and, consequently, if

from conditions of synchronism worsen characteristics of vhe

amplifier.
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s A2 ~ AH is ¢.layed, and
amplitudes of waves of the signal and difference frequency reach

, transmit their energy to the

(4.35)

Ef is not to small, the efficiency of the
amplifier can reach units and tens of percent.

Losses and deviations
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Fig. 4-5. Graphs of the change in space
of powers of the signal Sl(z)/SlO, differcnce

frequency 52(2)/810’ and pumping SH(z)/SlO
with parametric amplification of
traveling waves in a quadratic medium.
Just as in the theory of the generation of harmonics, Lhe
i:.fluence of the indicated factors is determined by values of the

~ 3 ~ A - -
given parameters 3= ; A= .. When 3<|, A<l the character .°©

Y OsAuo
the processes in the system qualit.:tively does not differ from the
case A=208=0. Let us note, however, that when 3:{: 0 together with
the spatial beats there takes place a monotonic decrease in amplitudcs
of the interacting waves. At sufficiently large & amplitudes A1 and
A, on the segment of change in z [0; «] have only one maximum each

(see [157]).

The method stated above of the calculation can be used and
during the analysis of interaction of the type (4.2)' in those cases
when and here i1t impossible to be limited to concepts about the
assigned field of pumping. Let us note, however, that the absence
of exponential growing waves in the last case makes this analysis
less urgent.

et us also note that this method is completely applied to
the problem on the generation of the second harmonic in the two-
dimensional medium (see (3.19a)). It is not difficult to see that

here when A(i)(O) # Ai (¢) the spatial beats will take place when

A = 00
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Investigation of conditions of saturation of the parametric
amplifier with high-frequency pumping is of interest not only from
the point of view of "he problem on the calculation of 1ts maximum
output power but espr - ally in connection with the problem of
parametric generat’ .u of electromagnetic oscillations. Acutally,
it is easy to see .uut if being uncder the influence of an intense
wave of pumping quadratic medium is placed in a resonator, possessing
sufficient high quality, in the medium oscillations at frequenciles
wy and w, can be self-excited., Such a generator represents special
interest in the optical range (cm [63, 64, 144, 145]), inasmuch as
at a fixed frequency w, in principle considerable returning of
frequencies wq and Wy is possible (let us recall that if we are
distracted at present from dispersion properties of the medium,
the only condition superimposed on frequencies Wy and Wy is the
condition (4.1). .

It is necessary to note that parametric generators of the
indicated type are investigated in detail in the radio-frequency
band (there we usually call them two-circuit parametric generators,
see for example, [148]). However, in optics such generators possess
a number of peculiarities, and we will turn to a brief analysis of
them.

3.2. Parametric Light Generator

A diagram of a tuned generator is shown in Fig. 4-6a. Falling
here on the quadratic crystal is the wave of pumping EH, freely
penetrating the latter. Directions 1' and I" are selected in such
a way that waves of frequencies Wy and W5, propagating in the
indicated directions, can coherently interact with the wave of
pumping

h+%=h

and, consequently, in virtue of that discussed in § 2 of this chapter
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Fig. 4~6. Diagrams of parametric
light generators: a) tuned
double-resonator generator; b)
monoresonator (degenerated)
parametric generator

! :,__E__ !
L £fe
EES .
ged’ g B g
£
Ry, (0)=0 Ry, (d)=0 g
Ro(0)=1 £, (d)+0 *

when A, KA, A~e™, Ap~ete | If now in direction of rays 1, 2

(let us recall that waves at frequencies w, 5 are ordinary), which
E

emerge from the crystal, we install mirrors (see Fig. 4-6a), in the
system there appears positive feedback, and self-excitation of the
osciliations becomes possible.

Values of frequenclies of self-excited oscillations are determined,
obviously, by the position of the mirrors.

We will not discuss in detail the analysis of factors determining
the range of smooth retuning of the generator; it is easy to see
that it 1s connected, first of all, with linear dispersion properties
of the quadratic medium (see [63]).
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Let us turn to the investigation of the process of excitation
of parametric oscillations. Let us consider the mcst simple variant
i of the parametric generator — the so-called degenerated parametric

TRRTTR

T T

!

3 ! generator (see also [144]-[145]), in which

;\; "

P .

. ;; 0)1=(D;=(0=-221-. (u.36)
1

;5 Self~excitation of degenerated parametric oscillations is possible,
‘:.:‘ »

obviously, in a one-dimensional resonator of the type Fabry-Perot!,
which contains the quadratic medium oriented in such a way that the
L phase speed of the ordinary wave of frequency w 1s equal to the phase
t, speed of the extraordinary wave of frequency w, = 2w in a direction

) 2 perpendicular to mirrors of the resonator. A diagram of such a

- generator is shown in Fig. 4-6b. Here a plane wave of pumping is

in incident on the Fabry-Perot resonator:

e VRN L A

sy E, =, A expi(o,f —Kk,T). (4.37)
3

§ It is assumed that the resonator is transparent for the wave of

f pumping; reflection factors with respect to amplitude at frequency
i w = 2w

H

fi .

R, (0)=R,(d=0. (4.38a)

If the nonlinear medium occurring in the resonator is orlented in
! such a way that conditions of synchronism are fulfilled for frequencies
1 - (4.36) and reflection factors at frequency w

S

s
-

R,(00; R, (@0 (4.38b)

RS DA SN 1
-

'In a one-dimensional resonator nondegenerate oscillations
1 t wy, = w, are possible, of course (see Fig. 4-1). However, here

a change in the generated frequencies is possible cnly with a change
in the direction of the wave vector of pumping kH.

w

it
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the thermal flucvuations 1inevitably present in the resonator can
cause self-excitation of oscillations at frequency w!. Here the field
in the resonator can be represented in the form of the superposition
of direct (all values pertaining to them will be noted by a (+) sign)
and return (-) waves:

E* = ef Af (n2)exp i (20f — &y 2) + e AF (u2) exp i (0f—k, 2). (4.39)

E™ = e7 Ay (2) exp i (20f+4-*52) + 7 Ay (p2)expi(of4-&, 2). (4.40)

Values referring to the field of pumping are noted here by subscript
2(2w), and to the field of parametric oscillations 1(lw). It is
important to emphasize that although relationship (4.38a) takes
place, in the field of the return wave, especially at large AI, there
are inevitably present frequency oscillations 2w — the return wave of
the parametrically excited oscillations generates a second harmonic
Therefore, in the examined diagram there always exists a "reflected"
wave at frequency 2w, E(orp)’ which propagates in the direction of
the generator of pumping.

If one were to be interested not only in steady-state oscilla-
tions of the parametric generator but also transition processes,
resolution of problem can be obtained with the help of the procedure
discussed in 8§ 5 of Chapter III. The rrocess of excitation of
parametric oscillations can be presented as a sequence of steps in
each of which the interaction of the wases 1s described by equatious
of the type(3.20). Then the initial equations, as in the problem
on the resonator frequency doubier, here are equations (3.65) which
must be solved with boundary conditions (compare 3.66).

Here it is appropriate to pay attention to the important dis-
tinction of the problem on the parametric generator (generator of
subharmonic) from the problem examined in Chapter III on the generator
of the second barmonic. If in the last case, the value of initial
amplitude A20 is immaterial, the process of generation of tue second

harmonic proceeds when A20 = 0, parametric excitation is possible

only at an initial amplitude of the subharmonic different from zero
(or in the presence of a side force having components at a frequency
of the order of frequency of the subharmonic).
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l(N) 0)=R,(0)- Al(N—-l) )

Al(N)(d) R'(d)'Al(N—l)(d) ‘ (4.41a)
" ¥ =yt (k.U1b)
A'}'-(N)(O)=Auo: n(m(d) 0 (4.U1c)

N — as before, the number of the step. 1In accordance with that
mentioned above on the rol: of initial conditions in the examined
problem, the following certainly should be

1(1)(0)*0 (4.42)

the initial amplitude of the direct wave of the subharmonic for the
first step should be different from zero!.

In the analysis of equations (3.65) we will consider that the
condition of synchronism is fulfilled exactly (A = 0), and the ratio
of the initial amplitude of the subharmonic to the amplitude of
pumping is small

: A ©®
| <1 (4.43)

We will consider also that losses in the medium are small (bdgn)

and the condition of the appearance of growing waves A,)n%w where
Anop is determined by relation (4.7) is fulfilied with a reserve,
and =T,

Under the assumptions made an analysis of the process of
establishing parametric oscillations can be conducted, by using only
amplitude equations (3.65) - motion is accomplished along a

+
1r quantity Al(l) (0) has a fluctuating origin, into equations

(3.65) there must be introduced, in general, fluctuating side forces
(see 8 U, Chapter II). If one is 1nterested however, in fluctuations
of the amplitude and phase of parametric oscillations, calculation
] of side forces is eguivalent to the calculatioun of %the initial
amplitude different from zero of the direct wave of the subharmonic.
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trajector very close to the separatrix, phases ¢+ and @ on every ctep
are constant, and their changes from step to step are connected only
with jumps in the phase of the subharmonic on mirrows. Thus, instead
of (3.65) we have:

* '“f + A% et
= + 0, Af At sindx =0; (L.4hg)
+
= —o,(Af)’si.sg¢*=0 (4.44p)
(when 84 << 1 and AH >> Anop the distributed losses in the medium

can be considered due to the appropriate correction of values Rw)‘

We will turn, first of all, to the conclusion of conditions of
parametric excitation of the oscillations. If (4.43) takes place,
calculacion can be carried out in the approximation of the assigned
rield AT = ALo» AE = 0. Considering sin ®+ = -1 (see the phase plane

2
of Fig. 3-6a) we have from (4.44a)

p
Afwy () = A}y, O)-expoy 4, 2. (4.45)

At the fixed point of the resonator oscililations of the subharmonic
will grow with time if the increase ir the amplitude on the N-step
exceeds the loss to radiaticn through the mirror, i.e.,, if
Afini©0 > A, 0).  In the approximation of the assigned field

Afnin0) =A%, @)-R,(0)-R,(d). Using (4.45), the condition of self-exitation

can be rewritten in the form

A
R.,(°)'R_(d)>g_°‘ no“. (4."6)
For ¢qA, d<l, instead of (4. U6), it 4is possible to use 2 more graphic
formula
2not (e, po
L L LS (4.47)
e Q
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(fc» the ordinary wave of the subharmonic in the examined case), where

= fd ' - . The term
Q RO R@ high quality of the Fabry-Perot resonator er

standing in the left side of inequality (4.47) can be called the
effective modulation factor of the dielectric constant of the quadratic
medium M; here condition (4.47) has the same form that of the
corresponding condition of excitation of the parametric generator ' ith

lumped parameters [147]'.

It is not difficult to show that for the double-resonator generator,
instead of (4.47) At>;ﬁ%3==. If the process of establishir.z oscillations
12

in parametric generator is described by equations (4.44), the change
in amplitudes of pumping and subharmonic on every step can be calcu-
lated by using solutions of the type (3.36) and (3.37).

'Thus, in the theory of parametric generation in the distribuved
medium, in contrast to the theory of diagrams with lumped parameters,
two conditions of instability appear: the condition of instability
in space (4.6) and in time (4.47).
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We have:

+ .
Al (@) =-——{-L-L..L—_(z.)___ secho, Ay, (25, —4d) . (4.48)
‘/l-_[AON] '
A?(N)(d) = Ay -thoy. oy {20y —d). (h.49)
Here
\/A3°+ % (A, O . (4.50)
W -arth A';’ . (h.51)

Quantity Af,,(0) can be caiculated in terms of A} (d); here one

—2
should consider tha“ part of the energy of the :gbéarmonic is expended
due to radiation through mirrors and owing %o generation of the wave
of frequency 2w (second harmonic of parametric oscillations). The
last prccess is described by formula (see (3.36)), and the boundary
condition (4.41c)

A;ZN)(Z) = V 2 A-l*iN—l) (d)R‘,(d)th X
X []!’“10'3 Afin—yy Ro(d) -(d - 2)] , (4.52)

and a decrease in the amplitude of the subharmonic A5 {z) occurs
according to the law of the hyperbolic secant (3.37), so that:

Al 0) = Af,, (0) + R, (0) R, (d) Afiy_y (d)-sech X
x [Vo9; Ro(d)-Afiw—a (d)-d] . (4.53)

Using (4."8)-(4.53), one can determine law of the establishment of

parametric oscillations.
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reflections N.! As follecws from the given graph, the efficiency of
the parametric generator can be sufficiently nigh. Using (4.48)-
(4.53), it is possible to obtain calculation relationships which

allow determining the amplitude of stead-state parametric oscillations.

Actually, in the steady-state operation
. Aﬁn;(d) = Ai*('n_z) (@)= A;y ), (4.54)

whence, using (4.48) and (4.53), the transcendental equation for A,,

1calculation of the process of setting when A # 0 shows that the
fulfillment of zonditions of self-excitation with a growth in A
becomes all the more difficult; the efficiency of the parametric
generator with a growth in A decreases, and the process of establish-
ing osciliations has an oscillator character (compare Fig. 3-1T7a).
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can be obtained. The solution of this transcendental equation can
be obtained graphically. However, in the case when losses in the
nonlinear medium are absent and the value of the parameter 0;4,.d<1,
it is possible to obtain (see also [14,])) the approximate expression
for the stationary amplitude 4, (d) . For this one should use the
energy considerations. In the steady-state operation, if losies 1in
the resonator are connected only with radiation, we have:

(B -Hg] = [Eg™ -Hy] + (B -Hp] - 2 (B -Hyv]. (4.55)

Here, for simplicity, R, (0)=1 is accepted (energy of the s.bharmonic
emerges from the resonator only through the right mirror).

—[agof — (A =2 (1 — R () 4, (). (4.56)

Although in general, for the calculation of A® and A one
should use formulas of the form (4.49) and (4.52), and for ¢,4,d<K 1
and R, (d)=! it is possible to simplify the problem, assuming that
in the steady state of the amplitude of the direct and return wave
the subharmonics in the resonator do not depend on coordinate z and
are approximately equal to each other, i.e.,

Al (2) = Ay (2) = AT, (d). (4.57)

Using (4.57) and boundary conditions (4.41c), as a result of
the integration of (4.44b) we obtain:

A = AT (d) = A — o3 (AF)*d. (4.58)
A= g, (A5)’d = 0, (4%)d. (4.59)

Substituting (4.58)-(4.59) into (4.56), we obtain:

[Ay]? --——(A,.o Fu i ) (4.60)

According to (4.60) the amplitude of the subharmonic does not turn
into infinity when R_ (d)=1: 1losses in energy occur due to the
generation of the wave of double frequency by the return wave of

il10




subharmonic E;. This (only for the return wave) is explained by
the nonmonotonic dependence of amplitude A}, on parameter o,d (let us
recall that the point with coordinates A;=0 and A,#0 on the phase
plane of Fig. 3-6a is not special).

Using (4.60), one can determine the amplitudes A" and Agw

wi_ _ 1=Ri(d)

A=, (4.61)
o __ a4 __ 1—R2 (d)
Az .ANO O’d . (u-62)

From (4.61) there follows an important conclusion — the amplitude of
the wave of pumping at the outlet of the parametrically excited
optical resonator does not depend on the amplitude of pumping at the
input A,. The latter means that the parametric generator is simul-
taneously a limiter of the amplitude of oscillations of pumping;
this circumstance was noted by Siegman [145].

The examined models of the parametric generators are, of course,
the simplest. In principle, by introducing resonance elements into
the configuration of the amplifier with low-frequency pumping (see
§ 2 this chapter), self-excitation of oscillations can be obtained
at the frequencies exceeding the frequency of pumping. There can be
definite interest also in the parametric generator in which waves of
the subharmonic and pumping are exchanged by energies on the border
of the nonlinear medium.

§ 4. Nonresonant Parametric Amplification
in a Cubic Medium

4,1, Parametric Amplification i Medium in

na
the Presence of a Static

v

Cubic
Pield

Inasmuch as in the presence of a strtic fleld in a cubic medium
three-frequency interactions are solved, relationships between
frequencies of parametrically interacting waves have the same form
as that for the case of the guadratic medium [see (4.1)-(4.3)]. At
the same time, in contras: to the guadratic medium, an essential
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role here can be played by incoherent nonlinear effects connected

with nonlinear corrections to the dielectric constant of the cubic
medium. An especially essential role of incoheren: effects appears

in conditions close to saturation of the amplifier; a changs in

phase speeds of interacting waves and absorption due to the correction
to the dielectric constant can cause a decrease in the amplificatiocn.

Below we will erplain that stated in the example of an amplifier
with high-frequency pumping. In the approximation of the assigned
field A, =const, the amplificavion of "weak" waves with frequencies
0., 0 4+0,=0,A A, is described by equations (just as in Chapter 11T,

let us assume o, 02 0, Lwe)

'%‘-+alﬁ,..4,sin(b+bl.4,=0; (4.63a)
Lo oy A A SN + 0,4, 20, (4.63b)

40 " (na) Ax A e 4.6
— + A LA -}-(a1 A‘+0,A’)A,co,¢_0,. ( 3c¢)

Designations in equaticns (4.63) are standard ®=g¢,+¢; the nonlinear
detuning (see § 4 Chapter III)

A(MP=Y1A30+Y:A¥+Y3A§- (h.64)

Let us note, first of all, that the presence of nonlinear detuning
considerably affects the form of the region of parametric amplificso-
tion (more accurately, the region of "instability in space" of the
zero state of equilibrium). In Fig. 4-8 there are constructed
regions of instability of the state A,=4,=0 in the space for cased
4,=0 and 8,50 and ¥,,3<0 (the method of their calculation is
absolutely analogous to that discussed in § 2 of this chapter). 1t
is clear that in contrast to the case of the purely quadratic medium,
the regions of instability are now no longer symiretric relative to

the straight 1line AY=0: the latter is fully evident, inasmuch as with
the growth in A®>0 and y,<0 the nonlinear detuning A{"™ ==y, A%, compen-
sates the linear at large valves of the amplitude of pumping.

However, the most impor.ant distinction of equations (4.36) from
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analogous equations (4.4), which correspond to amplification in a
quadratic medium, is the fact that for equations (4.63) there are
steady~-state solutions, i.e., saturation of the amplifier can occur

in the assigned field of pumping. In order to be convinced of this,
let us assume in (4.63) %‘--—“1 =2 _o.

Then from (4.632) and (4.63b) we have:

Az' db’
Ag = ;’61. (4.65) |

Using {(4.65), one can determine the steady-state value of phase @

Ausin @, = _.-1/ g_f:? . (4.66)

Using (9) and (11) for the steady-state values of amplitudes, we
obtain:

.. n/ o T o T e————
A=Y L ndT o) B o (46D
aey/Ta o

Here
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ﬂ—Y‘(l+ 2 0,63)+ 2(2 + 0,61)

Here ¥ and V; are linear combinations of parameters Yu ¥» and Ya

It is not difficult to understand the physical meaning of the
obtained result. The part of the energy transmitted by the wave of
pumping to waves of frequencies Wy and W, depends on the value of
phase ¢ =g, +q, At small amplitudes of A4, and A, the value of phase
® is determined by the detuning

A =AW 4y A2

and here sin ®=~—1, and pumping with a reserve compensates losses in
the medium. With a growth in amplitudes 4, and A, the value of the
nonlinear detuning is changed, and phase ¢ dzsparts from the value
corresponding to the maximum release in energy of pumping to the
amplified waves. In the steady state amplitudes of waves 4, and A4,

do not depend on z, and phase ®, takes such a value that the wave of
pumping acecurately compensates losses in the medium (see (4.66)).
When 0;,:=0, sin ®,=0. Peculiurities of the process of parametric ampli-
fication of traveling waves in a mediam, the dielectric constant
which depends on the amplitude of the wave, can be very visually
illustrated if one were to turn to an examination of the phase plane
of the amplifier. 1In the presence of camping, equations (4.63) yield
to analysis on the phase plane in the case m1=oh==%? (so-called
degenerated conditions of amplification).

Here instead of (4.63) we have (A,=4,=4, ¢,=¢,=¢):
dA .
—;iz—+oA.oAsxn20;+6A=f0. (4.69)

%+A“’+A"‘"+-0Amcos2¢=0. (4.70)
A =gy Ao+ 3 AV
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Tn accordance with (4.66)-(4.68) in the degenerated parametric
amplifier

. T 22
A,:]/%{A("’-}'y,/lﬁo?-% 1’%2—} (4.72)

and

smz%:“\/’*‘_cz:; : (4.72)

From (U4.72) it follows that in the degenerated parametric amplifier
of the traveling wave four steady-state phases are possible (these

phases are counted off from the phase of the wave of pumping); here
only two prove to be stable.!

Figure 4-9 gives a phase plane corresponding to the system
(4.69)~(4.70). Here, just as before, X=A sin ¢, Y=Acosp. An analysis
of the structure of the phase plane can be conducted by the usual
methods of the theory of oscillations. Singular points corresponding
to the steady states here prove to be focuses. The character of the
behavior of phase trajectories at great distances from the origin of
the coordinates is easily established by calculating the tangent of
the angle between the phase trajectory and radius vector:

_ _;_f_?_._ A Ly AL+, A + 04, c0s29
ige AdA - GAyosin29 40 . : (4.73)

From (4.73) it is clear that when A-cw the angle between the phase
trajectory and radius vector A2=X2+Y? approaches 90° — at large 4
the phase trajectories twist around the origin of the coordinates
and approach the circumferences in form.

In Fig. 4-9a the phase plane is constructed for that region
where zero state of equilibrium is unstable — the amplitude of the

IThe presence of two stable waves with different phases 1is of
considerable interest from the point of view of applications (see
[56], [133]).
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Fig. 4-9. Phase plane of a degenerated parametric ampiifier of
a traveling wave, the limitation of the amplitude of growing

>

waves in which occurs due to the nonlinear corrections to the
dielectric constant: a) the relationship between the linear and
nonlinear detuning is such that there exist two stable states
with amplitudes and phases unequal to zero distinguished by m;
b) the zero state of equilibrium is stable; besides it there are
still two stable states with amplitudes different from zero
(region of stable amplification).

weak wave supplied to the input grows in space. (Here |A™ 4y A%]<

< VY oA%—#*.) Behavior of the amplitude and phase of the amplified
signal in space, which corresponds to the phase plane of Fig. U4-9a,
is shown in Fig. U4-10. The parameter of curves here is served by

the boundary phase ¢(0)= ¢, From the given curves it is clear th.t
the process of amplification occurs here in such a way that at first
the phase of the signal takes a value corresponding to the appearance
of the negative absorption on the frequency of the signal. Here
there starts the exponential growth of amplitude A. When A~A4, the
phase somewhat departs from the optimum — the amplifier is saturated,

and the approach to conditions of saturation in the examined medium
has an oscillatory character.

Ar interesting peculiarity of parametric amplification in the
cubic medium is the presence here of very specific conditions of
"stable" amplification appearing only at large amplitudes of the
signal A(0)>A,,. Actually, altnough at sufficiently large AW >0 the
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Fig. 4-10. Graphs of the dependence of amplitude L::i&-and phase

¢1=-%-of the growing wave on the coordinate z in a degenerated

parametric amplifier of a traveling wave, in which the limitation
of the amplitude occvrs due to nonlinear corrections to the di-
electric constant. The parameter of curves serves as the boundary

phase & .

zero state of equilibrium is stable, here at the same time the
stabilized amplitude A, can be different from zero [see (L4.71)].

The phase plane corresponding to conditions of "stable amplification”
is constructed in Fig. 4-9b. (Here A® 4y 42> A8,

4,2, Parametric Amplification with
Four-frequency Interactions

In the absence of a static field to the youngest of nonlinear
interactions in a cubic medium is the four-frequency. Therefore,
here the intense wave of pumping

E, =e A expi(od —Kk,r)

can transmit energy to weak waves the frequencies wy and Wy and wave
numbers X, k; of which satisfy relationships of the form:
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0)1+(l)3=20)“; (u.'zua
k1+kz=2k". (

Let us note that if one were not interested in conditions of satura-
tion, calculation of the amplification here can pe conducted by
proceecding from the model of the medium with variable parameters

(see § 4 of Chapter II) — presenting the dielectric constant of the
cubic medium in the form:

A
e(l,m,z)=/;°(m)+1€4e’('*'""9’)' (I.75)

where the z axis is selected in the direction of vector k, and =20,
ke =2k,. Here the modulation factor of the dielectric constant M~0A?
and, consequently, the factor of accretion Iy is here proportional

to the square, but not the first degree of the amplitude of pumpine
as takes place in the quadratic medium [see, for example, (4.8d)].

It is interesting to note that in the examined amplifier it is
comparatively simple to satisfy the condition of synchronism (4.74p).
Indeed, for conditions close to the degenerated m,::m,::%}::mn, the

electromagnetic wave carrying out modulation of parameters of the
cubic medium has a frequency close to frequencies cf amplified waves.

We wiil not more specifically discuss the analysis of parametric
interactions of the type (4.74) — the smallness of cubic nonlinearity
in real optically transparent media makes, in any case at present,
an experimental realization of these interactions difficult. Let us
note also that interactions of the tvpe (4.74) are not r.alized now
and in the radio-frequency band (although in the theoretical work
Fountana, Pantell and Smith [162] there was noted the possibllity
of parametric excitation of oscillations in the millimeter range,
with the use of cubic nonlinearity of molecules of gas for As==10* V/cm
and high quality of the resonator Q==10Y).

§ 5. Resonance Parametric Effects — Forced
Combinational Scattering

Thus far in examining parametric effects, we originated ¢ -
tially from the model of the nonlinear medium introduced in Chapter T
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and described by equations (1.17) and (1.41). 1In the indicated
model, in examining the nonlinear addition to potential energy there
were considered only normal oscillations possessing a dipole moment
different from zero and therefore directly connected with the
electromagnetic field. At the same time, in the molecules symmetric
oscillations not possessing the dipole moment and appearing therefore
in absorption spectra are possible. In a linear approximation,
cymmetric oscillations of atoms (natural frequencies of these oscil-
lations lie usually in the infrared range) and the electron oscilla-
tions determining the polarizability are accomplished independently
of each other. Another situation takes place if one were to consider

nonlinear terms in the expression for the potential energy of the
molecule.

In order to explain what has been said, we will examine the
isotropic medium, for example, liquid. Let us designate by x the
normal coordinate of oscillations of atoms in a molecule of the

examined medium and by y — the normal coordinate of oscillations of
the electrons.

In the isotropic molecule the expression for potential energy,
taking into account the younger nonlinear terms, has the form:

U= 2 Fet— fif+ 0 + oy + g’ + o’ (4.76)

Here F and f — "elasticities" of bonds in the molecule. Terms of the
third order describe the different nonlinear effects connected with
motions of atoms and electrons and with their interaction. Coeffi-
cient o determines the anharnonicity of oscillation z, coefficient

a3 — the anharmonicity of electron oscillations (see Chapter I), and
coefficients 0y and o — nonlinear interactions of oscillations z and
y. It is not difficult to see that coefficient o determines the
phenomenon of combination scattering well-known in optics. Actually,
taking into account this term the equation of motion for the normal
cocrdinate y in the presence of an external electrical field has the
form:

ay dy n = y,
M, — + R, 2 + fy 4 2ary = ¢E. (4.77)
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(the molecuie is considered isotropic).

With the help of equation (4.77) it is possible to construct
the usual "modulation" theory of combination scattering. Here
assigned oscillatlons

x=X(t)expi[od +¢(f)) + complex conjugate (4.78)

(amplitude X(f) and phase ¢(f). in general, are random functions of
time, inasmuch as the motion =z is thermal) modulate the natural
frequency of the electron osciilations:

0y = 0y {1 4 m () cos [0y + ¢ (2)]), (4.79)

where m”-f%n In the presence of modulation of the form (4.79) the
spectrum of the field dispersed with respect to the molecule contaings,
obviously, besides the frequency of the incident wave w, components

at frequencies w - Wy and w + Wy — so-called "Stokes" and "anti-
Stokes" spectral components.

It is necessary to consider, nowever that not always can oscil-
lations of x be examined as assigned. Actually, taking into account
the term axy? the equation for the oscillation z has the form:

M:‘g_.;..q%l‘_.;.px-;.ayz:o (4.80)

(filed E does not directly act on oscillation x3 calculation of
forces of thermal crigin inducing oscillations (4.78) for the future
is immaterial).

If fleld E is harmcnic
E = E,exp i (0 —Kr)

and o »w, the presence of term ay? in (4.80) does not play an important
role: 1t is possible not to consider influences at frequencies o’ =0

and o”"=2» connected with it. However, if field E is a superposition
of two waves, the difference frequency of which o;~w;,=~w0, the term ay?
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has on oscillations an x resonance effect. 1In the first case the
simple "modulation" treatment of combination scattering is inappli-
cable; and there appears a more complex effect, which we will subse-
quently call "forced" combination scattering.

Let us examine forced scattering i more detail. Let us assume
that on falling the isotropic medium described by (4.76), (4.77),
(4.80) are two monochromatic waves, which we will call the wave of
the signal (frequency wc) and wave of pumping (frequency o, ) so that:

E=E.+E,=Eqexpi(of—Kk.)+ 5, exp i (0,f— K,r). (4.81)

We will consider that vectors k. and %, are collinear; let us direct
the z axls along the normal to the boundary.

Amplitudes of waves in the medium, as usual, will be considered
slowly changing functions z, For simplicity let us assume also that

0, 0, LBy, 50 that instead of equation (U.77) it is possible to write
the "quasi-static" equation of the form:

1y +20xy =¢E. (4.82)

Being interested only in stationary forced oscillations of the
molecule, let us look for solutions for coordinates z and y in the
form:

x=Xe' (™t 4 complex conjugate;
y =Y - Y + complex conjugate. (4.83)

Here, in general, it is not assumed that

Wy . =0,= —
) [ 0 V M.

From equations (4.80) and (4.82) there are relations:

3 Yo+ aX*V, = eE, e fY, + aXY =eE, e~ (4.843)
0gd (A + X+ -;:—(Yzy") =0, (4.8Ub)

_ 1 ) R
where A.—.-;;.b-[mg—(m“—-mc)z], 3 "
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From (4 84) there avre easily obtained relation for amplitudes
Y. and Y,, which with multiplication by eN pass into expressicns for
amplitudes of polarization at frequencies of the signal and pumping
(we retain only compunents connected with nonlinear terms):

2nP.=gq (BB Eq 2nP, =g (€, Eo E., (4.85)
- A
_ 2nNaret
where q—-——~§r.

In general polarizations of waves E, and E,, entering into the
examined medium do not coincide. With the propagation of the waves
in a nonlinear medium, their polarizations are changed [see (4.85)].

Here one should note one peculiarity connected with the deriva-
tion of truncated equations of the nonlinear isotropic medium. Let
us remember that in the propagation of waves in a greatly aniso-
tropic medium, as can be seen from Chapter II, the weak nonlinear
polarizability of the medium cannot essentially change its polari-za-
tions ¢;. Therefore, truncated equations described the change in
scalar amplitude of the wave A(r, {} without a change in its polariza-
tion e In the examined case (isotropic medium) any direction of
vectors E. and E, lying in plunes perpendicular to vectors §s. and s,
accordingly, 1s the natural one. Therefore, the truncated equations
describing the change in amplitudes of waves both in magnitude and
in direction must be vector equations.

As was already indicated, here we will limit ourselves to the
) simplest but also most interesting case when vectors k. and k are
collinzar. Here spectral components of the vector of nonlinear
polarizability P. and P, are located in a plane perpendicular to
vectors k. and Kk,. Then the truncated equations describing the
behavior of the vector amplitudes of the waves, have the form
(compare § 3 of Chapter II):

T =B (1 —it) (BE) E; T = —B, (1 + i) (E,E)E,, (4.86)
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%ii____ Frem equations (4.86) it immediately follows

A
cos3 ., 2(1-+-A3)

where § =

that if E_ and E, are pernendicular, there is no interaction of waves.!
Let us introduce new coordinate 2,2, and z, selecting the 2z ax 3 along
the direction of the propagation of the waves. Vector differential
equations (U4.3€) allow several first integrals of the form:

Ecl E:i EM E:
Be + Be

] =£&y_»and [EE,] = B. (4.87)

Here £, and E,, — projections of vectors E.and E, on the z, axis; C
and B — scalar and vector constants.

i

The first of the relations (4.87) can be interpreted as the law
of conservation of the number of quanta. For example, in the case of
the linear polarization of the waves, for i=j the first relation of
(4.87) obtains the form:

Ncl+~zi=No;o (4.88)

where N; — number of quanta of corresponding frequency polarized
along the =z; axis, which passes through the area element, perpen-
dicular to the z axis.

Thus, Just as in the theory of nonresonant parametric amplifi-
cation of equation (4.86) it is possible to examine the following
separately for two conditions:

1. Conditions of the amplification in the assigned field of
pumping (linear conditions). In this case the second equation of
(4.86) can be disregarded. Decomposing the vector amplitude of the
signal E, on components parallel to the field of pumping E, and

A A ,
perpendicular to E_, (E_Eﬂ =0;E,_E"=-§2-). instead of the first equation
(4.86) we have:

IPhis is accurate only for liquids consisting of isctropic
molecules.

123




Ll

5 IR S

TR

dE.y . dE ;
—b =B (1~ EPE,: — =0 (4.89a)
and, consequently,
T, = E, () +E ) €15 Y (4.89b)

Maximum amplification takes place for E,jE. (0) and A =0. Here for

the ractor of accretion we have F°=JEA'~ﬁ§1 In the medium possessing
CO0s 82
losses at frequency o, the exponential growth E. will take place only

when E>E,, [see (4.7)].

2. Conditions of amplification in which there becomes essential
a reverse reaction of the wave of the signal on the wave of pumping
are conditions of saturation of the amplifier. An analysis of these
conditions represents the primary interest from the point of view of
the theory of the parametrlc generator, which uses the phenomenon of
forced combination scattering. Here equations (4.86) must be solved
jointly. An analysis of equations (U4.86) shows that if A-£0 and
vectors E. and E, are not collinear, the linearly polarized light
passes in the examined medium into an elliptically polarized light.
Here rotations of vectors E, and E, with the propagation of waves
along the z axis occur in varlous directio .s. Conversely, when A=0,
the linearly polarized light entering into the medium remains such
even when vectors B, and E, are not parallel.

For linearly polarized waves, the value of angle Y between
vectors E, and E, is determined by the expression:

Bl

sinty = —————
[ [5F

The law of the change in moduli of amplitudes E.and % can be
obtained if one were to use the relation

(EEYF + |[EE] = |EL- [EF. (4.90)
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then

2B = 2B, (EEL—IBP; - B, = — 25, (E.* [E* —~ [BF). (4.91)

The solution to these equations has the form:

- 1~Ge~Puhz s B g (4,92
Ef=CHA=oar i Bl = 2 C—[ED). (4.92)
Here
A=) o—EpricactCu Gm B
" A— = [Biolt
]

The solutions of (4.92), if they are examined for all values z
(and not only for the positive), determine the energy transitions
from the state at z=—o whea Eff=C—A |[E|*= -:t"(C_+A) and to the

state at 2= 4+ o when
B =C+ A [Bf =2 C—A).

Thus, in the process of the proparation of waves, when E,E.==0
the energy of the wave of pumping passec to the wave of the signal.

The maximum value of the amplitude of the signal at the outlet
of the system is determined by relationship of the Manley-Rowe type
[see §§ 3.4 of Chapter II):

E} (o) = X EZ, (4.93)

Neither parameters of the substance nor detuning «,—oj —ao,
enter into (4.93). Of course the less distance at which there is
attained a maximum power of the signal, the less the detuning and
the greater the parameter q.

If the examined nedium is placed in the Fabry-Perot resonator,
tuned to a frequency ~o,—w, 1in it parametric oscillations at a
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frequency equal to o,-w, can be self-excited. The condition of self-
excitation of parametric generator can be obtained absolutely
analogous to that which was done in 8§ 3 of this chapter; here one
should consider that in the parametric generator, using forced
combination scattering, amplification of the signal takes place both
for direct and for return waves.

Designating by Rl and Rz reflection factors of mirrors at
frequency o,—w, Jor the condition of self-excitation we have:

B Epocus'® | —RWRy &
T kd O Q (4.94)

d — distance between the mirrors (compare (U.47)).

The magnitude of the stationary amplitude in the examined
generator is determined by the reaction of parametrically excited
oscilliations on pumping; therefore, formula (U4.93) together with the
maximum amplitude of the signal at the outlet of the amplifier

determines in order of magnitude the efiiciency of the generator.
Wy
Wo

lies in the optical range, and frequency of symmetric oscillations -

Le. us note that inasmuch as usually

> 1 (frequency of the signal

in the infrared) the efficiency of the parametric generator, which
uses the phenomencn of forced combination scattering, should be quite
high and reach tens of percent. The polarization of oscillations

of the generator will coincide with the polarization of the wave of
pumping.

It is interesting to compare characteristics of amplifiers and
generators using the phenomenon of forced combination scattering
with characteristics of similar devices usirg the nonlinearity of
electron polarizability (see §§ 2-U4 of this chapter). 1In both cases
the process of amplification is the result of the disintegration of
photons of pumping, however, if for nonresonant interactions with
disintegration of a photon of frequency o, there appear two photons
of frequencies a,, @, (0 +0;=0,), with forced comoination scattering
part of the energy of the photon o, is transmitted to the wave of
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frequency o,—w,, and tne remainder is transmitted to molecular oscil-~
lations at frequency ®,, The last circumstance is the reason for

the fact that with forced combination scattering the stored inter-
actions occur independently of dispersion properties of the medium.
The energy exchange between waves of pumping and the signal is
accomplished by tne means of molecular oscillations; the phase of

the latter is established each time as optimum from the point of

view of energy transfer from the wave of pumping to the wave of the
signal. Witn nonresonant inter .ctions the indicated energy exchange
is carried out with the help of che electromagnetic wave of the
difference frequency; its phase is determined by dispersion properties
of the medium. In accordance with what has been said, if conditions
of synchronism for waves of frequencies o, o, and o,—®. cannot be
carried out, the appearance even small dipole moments for molecular
oscillations (weak coupling) can considerably worsen characteristics
of amplifiers and generators on forced combination scattering.

The band of the amplifier on forced combination scattering is
determined by the quantity 6, i.e., relaxation time of oscillation =.

Thus far we were limited to examination of behavior of only
Stokes components of lines of combination scattering in the field of
the intense wave of pumping.

Interesting effects, in a certain sense similar to those
examined in 2.3 of § 2 of this chap*er to parametric effects with
low-frequency pumping, can be ovserved on anti-Stokes components.

In this case the field in the medium should be presented in the form
of the superposition of not two but at least three waves: with
frequencies o, 0,=0,—00 0, =w0,+ 0, [compare with (4.21)]

. E=E,+E,+E;= é,.(pz) exp i (o, f —k,1) +
+ E, (12) exp § (0,f — ky1) 4 E, (u2) exp i (0,f — Kqr). (h 95)

For vector amplitudes E, k. and E, there can be obtained
truncated equations absolutely similar to that which was done above.
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Conducting the corresponding computations, we arrive in the
examined case to the system 6f three truncated equations for
amplitudes E,, E, and E,, In the assigned field of pumping the system
is reduced to two equations for slowly changing amplitudes E. and E,:

d . "
T _B.(1—iB) [(EE, et ~2r 4 (ESE )| E,; (4.96)
= —p,(1+i8) [(EE)+ (EiEzjet +hamr] B, (4.97)

Right sides of equations (4.98) and (4.97) do not contain oscillatory
terms and, consequently, stored effects are possible if

2K, = K¢ + Ku. (4.98)

Thus, 1f the stored interaction of the field of pumping with
the Stokes component takes place in a wide interval of angles k,,Akc
(let us note that collinear vectors k, and k. were introduced above
only for simplicity), the stored interaction of the field of pumping
the anti-Stokes component takes place only in fixed directions
determined by formula (4.98).

Physical meaning of (4.98) can be explained in the following
way. The energy exchange between waves wlth frequencies o, and o,
and o, and w, is produced by the means of the same molecular oscilla-
tions having the frequency w,. Both shown interaction will lead to
stored effects, if optimum energy exchange for them was carried out
during the same phase of molecular oscillations (compare (4.18)).

An analysis of equations (4.96) and (4.97) will be conducted
in the simplest case A =0; the amplitude of pumping will be considered
real, and for simplicity we disregard dispersion of the medium in
band 0,—w, ©,-+®. Then equations {(4.96) and (4.97) become scalar
(condition (4.98) is fulfilled for one~dimensional interaction) and

acquire the form:

T T+ (4.99)
L - —nE+E), (4.100)
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where T,=pE% T,=8E%

It is easy to obtain a general sclution of these equations for
conditions:

2=0;. E.0)=Ee; Es(0)=E,

It has the form:

Eud) = — s [P [t — e (vt ] 4

I_rcl
" 4B [Fe—Fem (T ]} (4.101)
Eele) = g (P (1™ (7o | 4
4 Ees [[y — g™ (R TR ], (4.102)

From expressions (4.101)-(4.102) it follows that when z-»o amplitudes
E: (z2) and E,(2) approach stabilized values determined by relationships:

Eoy= g WFuo+ TiEol; (4.103)

By i M+ TEul. (4.104)

The character of the change in amplitudes E.(2) and E,(z) with the
coordinate 1s determined by the relationship of the boundary awpli-
tudes. If

En+Eyu>0, (4.105)

then — Egy>—E, , and amplification of the anti-Stokes component
takes place. With fulfillment of the inequality opposite the

inequality (U4.105), —Fay<—Eax and the amplitude of the anti-Stoke
component decreases with distance.

It is necessary to note that in an isotropic dispersive medium
condition (U4.98) cannot be carried out for waves of one direction;
therefore, coherent radiation of anti-Stoke components in a liquid
exclted by an intense parallel beam of the laser, occurs in the cone
by the solution B’z;‘:;“’—:-(n.—{zc), the axls of which coincides with the
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azis of the beam of basic radiation. Here ng m, and m; are indices
of refraction. The corresponding radiation of Stokes components in
this nase also occurs at an angle to the vector k,. Finally, besides
components o,—v, and e,4w,, in the medium highest combination
frequencies are also excited — w,tnw, (n=2 3., see alsv [205, 208]).
The spatial structure of this radiation (see Fig. 4-11) can be

estnblished on the basis of an analysis of dispersion relacionships
of' the type (4.98).

Fig. U4-11. Diagram characterizing
the spatial structure of the radia-
tion of anti-Stokes components with
forced combination scattering of a
plane monochromatic wave in an iso-
tropic dispersive medium. The anti-
Stokes component with a frequency
oa=wy+w 15 radiated in the cone of

directions determined »y the rela-
tion 2k,=kc}k,. Here directions are

shown in which there occurs radiation
of the component of a higher order
oy =0, + 205 k;=3k~2% .

Thus, the expounded theory of forced combination scattering
permits not only giving a qualitative treatment of the mechanism of
the phenomenon but also obtaining a number of quantitative results.
Yere constants (a, p) should be determined from the quantum-mechanical
calculation or by experimental means. Quantum treatment of the
phenomenon of forced combination scattering is given in [156] and
[200]. It is necessary to note, however, that ir the mentioned
works the analgsis is limited only to the outlet of conditions of
the excitation of oscillations on Stokes compouents (for parametric
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effects in quantum systems see also (163)). In conclusion of this
section one should stress that the problem above examined on forced
combination scattering is the simplest. Let us note, first of all,
that calculation of the anisotropy of electrical properties of
molecules leads to the conclusion concerning the possibility of
interaction in the medium consisting of such molecules of waves at
frequencies o, and o.=~w,—w (Rayleigh and Stokes component) with any
polarizations or the indicated waves (compare with equations (4.86)).

Interesting parametric effects can be connected with terms of
the fourth order in the decomposition of potential energy (4.76). A
diagram of the classical calculation of the indicated effects ~
effects of forced combination scattering of the second order,! is
analogous to that stated above. An addition to the potential energy
(U.76) in the simplest case of two normal oscillations has the form:

AU = Bixt -+ Box®y + Baxty? + Poxy® + Byt (4.106)

The passive combination scattering of the second order is
described by the term with B,; in equation (4.77) force of the form
28,27y 1s connected with it. A reverse reaction to the molecular
oscillations is carried out due to the force 2B,xy? in equation (4.80).
The latter means that in contrast to scattering of the first order
a reverse reactlion here has the character of the parametric effect
on oscillations x (see 4.80). Coherent molecular oscillations here
can appear only under the condition of an excess in the threshold
of parametric excitation. An interesting effect can be connected
with the term at p,; here appearance of forced cumbination scattering

wlth a frequency o, +u,—w 1s possible with excitation of the medium
by biharmonic pumping of the form:

B R avad /1’4 [ AP ~L P 7] 0’ . .
—y T o Cnyo‘ W T Ry ) T ey Api(ﬁ)l—l\"l) ( .

e
=7
(]
-~
p—g

(in the degenerated case o) =u,=w, the "Stokes" component 2e,—u,
appears).

'For the usual, "passive," scattering of the second order, see
Ye. F. Gross, P. Pavinskly, A. Stekhanov UFN, 1951, XLIII, No. 4, 536.
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Pir an interaction of the last type coherent molecular oscilla-
tions are excited just as in the case of scattering of the first
order (corresponding force in (4.80) ~py® ). Let us note that the
threshold of forced scattering of the second order for both examined
variants is very high.
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CHAPTER V
MODULATED WAVES IN NONLINEAR DISPERSIVE MEDIA

§ 1. Introduction

Thus far, ih examining nonlinear wave interactions in dispersive
media we were limited to cases when amplitudes and phases of the
interacting waves do not depend on time (waves are unmodulated). At
the same time, problems on nonlinear interactions of modulated waves
now play a very important role in nonlinear optics. In this region
it is possible to distinguish two classes of problems:

1. Problems connected with the investigation of the process of
modulation o. light waves in nonlinear media (see, for example,

[1651-01721).

2. Problems, connected with the investigation of distortions
of the form of modulation, with propagation of the modulated weave in
a noniinear medium or a medium with variable parameters (see, for
example, [56], [1731).

For description of regularities of the propagation of modulated
waves in a weakly nonlinear dispersive medium, the method of slowly
changing amplitudes can be used (see Chapter II). Inasmuch as the
complex amplitudes are changed in this case both in space and time,
truncated equations acquire the form of partial differential equations.
The solution of them becomes, in most cases, complex and can be
conducted only by means of numerical integration. Only for the
simplest problems can there be obtained an explicit solution, and on
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its basis the process of the propagation of light waves is analyzed.
Two such problems are expounded in this chapter. The first problem

is the modulation of a light wave with passage of it through the
electro-optical medium, which is found in the low-frequency (as
compared to optical frequencies) electromagnetic field, and the

second problem is the passage of a modulated wave through the
parametric amplifier. Both these problems are analyzed in a parametric
approximation, i.e., in the approximation when the field of one of

the waves can be considered assigned. In Chapter IV it was shown

that in the parametric amplifier, whille wave of signal did not grow

in amplitude up to the value comparable with the amplitude of the

wave of pumping, such an approximation is valid. An absolutely
analogous position takes place in the case of the propagation of a
light wave on a nonlinear medium occurring in a low~frequency electro-
magnetic fleld. 1In this case the action from the side of the light
wave on the low-frequency field can be disregarded, and only the
influence in the low-frequency field on the fleld of the light wave
can be examined.

For the foundation of the possibility of examining the behavior
of the light wave in a parametric approximation, let us turn to %the
interaction of three waves, studied in Chapters II, IV in a medium
with nonlinearity of the quadratic type and analyze the case when
the frequency of one of the waves is considerably lower than
frequencies of the other two. With incidence on the boundary of
nonlinear and linear media of two waves with frequencies Wy and W,
(in this case o,w;) and comparable amplitudes, in the nonlinear
medium there appear waves of sum and difference frequencies:

0y =0y + @, (5.1)

If the wave vector of the appearing wave satisfies the condition of
synchronism:

ks =Ka % K, (5.2)

4

the amplitude of the corres.onding wave grows with distance until
the amplitude of the wave with index "2" falls to zero. With
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fulfillment of the condition of synchronism for the sum frequency
("+" sign in (5.2)) the amplitude of the wave with subscript "1"
decreases down to a certain value A, . If, however, the condition
of synchronism is fulfilled for the difference frequency ("-" sign
in (5.2)), the amplitude of the wave with subscript "1" increases

down to value Ayme . In the case o,w, the drop A} —A , or 4 ., —A4,
is equal to (see § U4, Chapter II):

A = A = & g

‘.410—' lmia = “imax T 10“; 10° (5.3)

Thus, the amplitude of the low-frequency wave practically does not
change which gives the basis to disregard the effect on this wave
from the direction of light waves. This means that the process of
the interaction of traveling waves in the falfillment of condition
o,€w; can be described gquite accurately in the parametric approxima-
tion. Similarly, such an approximation is admissible in the case of
the general form of the low-frequency field.

The process of the modulation of light occurs differently in
anisotropic and isotropic media. 1In arisotropic nonlinear medla
(for example, in KDP and ADP crystals) phase modulation of linearly
polarized waves is carried out. In isotropic media (for example,
crystals CuCl, ZnS and others) and also in anisotropic media in
directions of isotropy with modulation elliptically polarized light
will be formed. Therefore, an examination of the process of modula-
tion in anisotropic and isotropic media will be conducted separately.

§ 2. Modulation of Light in Optically
Anisotropic Crystals

If a light wave propagates in a quadratic medium occurring
under the effect of a modulating electrical field E,(r,f#), then the
complex amplitude of this wave A{r, #), as follows' from Chapter II, is
described by a truncated equation of the form:

2tin®

o (€xeEn) A, (5.1)

(e [ke]]s %'-!— [e(ke]] VA = —
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Here, just as in the second chapter, e — unit vector directed over

the electric field stﬁength of the light wave, X and 8 — 1its wave

and beam vectors and % — operator of the quadratic nonlinear polari-
zatlion. As was alreacdy underlined in the second chapter, the equation
of the type (5.4) determines the change in amplitude A along the
direction of beam vector s. In a direction perpendicular to s,
equation (5.4) does not describe the change in amplitude, and it is
determined only by specific subsidiary conditions of the problem.
These conditions include properties of the medium, boundary conditions,
and the form of the modulating field. Considering that A=Ae™, we
will obtain for YA the expression:

VA=(V A-+id, 7o, (5.5)

In this expression directions v 4, and To in general are different.
If the crystal occupies the half-space ¥>0, then V4 1s directed
perpendicular to the plane of division of the meaia, i.e., along the
x' axis. If the field E, constitutes a plane traveling or standing
wave, then the direction v¢ coincides with direction k, of the wave
vector of this wave.

Let us consider at first the case when the field of modulation
E. has the form:

E, =E2 cos (0, —k,r), (5.6)

Then truncated equations for amplitude A, and 9% will be recorded in
the following form:

s 1 Ao
. Ox v,-pcosall\t’
o, 1 &
+ 4 ———— % = —Bcos(Onf — knb),
® e ¥ -1

where & — coordinate in the direction of the vector ki v, — group
speed, and

. A -

= 2t (ezeEf,,) (5.8

K2 A A {5.8)
cos sk.cos sky,
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From equations (5.7) one can see, first of all, that with
incidence on the crystal of unmodulated light, in the passing wave

there appears purely phase modulation. Integrating the second of
these equations, we have:

{
@ = 90— BE A E (o5 (0t — K —ACp), (5.9)
A(")E L. N
where
. A
A(—).—_‘ ‘J’__'. - l”l’DAcos skﬂl. ( 5 . 10 )
20,p €OS Sk

Expression (5.9) characterizes modulation of the phase in the
examined case,

With fulfillment of the relation

.——«o,,,cossf'(,, (5.11)

»;
?/l s

the index of modulation for given § is maximum and grows linearly
with distance along the direction of propagation of the modulating
wave. Here, as one can see from (5.11), the component of the group
velocity of light on the direction of propagation of the modulating
wave 1s equal to the phase speed of this wave. Condition (5.11) is
the condition of synchronism of the wave of modulation and all
spectral components of the light ware. Actually, for the spectral

component of frequency ot=o0+o0, the condition of synchronism has
the form:

kT =K+ Kn. (5.12)
Expanding function w{kt)=w(k+k, in series and considering that kn,
in absolute value is many orders less than k, we can obtain the
relation:

dv
3;"."=m”" (5.13)

which coincides with (5.11).
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Thus, for amplitude E, of the electrical field of modulated
light wave with fulfillment of the condition of synchronism we have:

E,= eAOel {9a=Blcos (o 1=k ¢ )N ‘ (5. 14 )

If one were to set the defined value &, then in this section the
index of modulation my=B% will be constant. As is known from the
theory of phase modulation, amplitudes of combination components of
a wave with frequencies o *no, are determined by Bessel functions
Ja(my). With a change in & the spectrum of the light wave is trans-
formed. When ~my=24, for example, the amplitude of the component
of frequency w turns into zero, i.e., the energy of the wave com-
pletely turns into side frequencies. At fixed £ tuning can bve
produced by a change in amplitude of the modulating wave. Experi-
mental realization of such a scheme of modulation is the subject of
work [169].

Let us examine now the case when the modulating field E, has
the form of the standing wave

E, =E%cosw,t-cosk,r. (5.15)

By presenting the standing wave in the form of the sunerpositicn
of two traveling waves, it is possible to obtain immediately the
solution of the truncated equation for the phase in the form:

1 o, sinate

= @y~ —BE 1% . — — A\-IE) —
PER— By A cos ((o,,,.t Kpnt — &)
- ————-—A(+)§ cos (0nt 4 Knr — AHE), (5.16)

where AY? is determined by expression (5.10), and

A
Ab)zs OmtEm0rpcosskn (5.17)

A
20rp c03 3%y

At first glance it is natural to strive to ensure the synchronism
between the light wave and one of the traveling waves of low
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frequency, for example, the first in expression (5.16). The second
wave, traveling in the opposite direction, interacts with the light
§' wave considerably more weakly and does not give an accunulation
effect. However, the given reasoning has meaning only for those
- cases several half-waves of the modulating frequency fit on the length
- of the resonator. If, however, on the length of the resonator there
s is less than half of a wavelength, then each of the traveling waves
| of modulation in equal degree interacts with the light wave, and
i fulfillment of the condition of synchronism is not obligatory.
3 Indeed, let us assume that synchronism is ensured for the first wave
;! in (5.16), i.e., A" =0. Then A+=pg, and
!
|

sinky, &
km§

e v R Aago s ey

: ® = @y - BECOS (0! — £ B) — — BE cos ot (5.18)

! If one were to designate the index of modulation by the first wave mg,,
and the second my,, then the quantity

’n¢’ = Sink,"E
3 e Fmf (5.19)

characterizes the relative contribution of waves into the modulation
of light wave. When k,§&1 quantity %%%::1. Weth a growth in £ this
ratio decreases, since the accumulation effect appears. Such a modu-
lator is described in [167].

P S

The field g, uniform in space is a special case of a plane
standing wave, when &, =0. We have then A(+)=A‘")=2—‘:”L=A and

it e o)

i p
L‘

4 (p.=q>o—-8"';A§ cos(ont —AR), (5.20)
%‘ where & - coordinate along the direction of the ray of light. (A

i, corresponding experiment is described in [1931).
i

o

L § 3. Devices with Prolonged Effect of the Field

- of Modulation on a Light Wave

Modulators of light which use the effects of synchronism of the

light wave and wave modulation, have a number of important advantages
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as compared to modulators of other types. One of them, moderate
power, is consumable to modulation. Let us consider, therefore,
certain question. referring to modulators with one traveling wave of
modulation occurring in synchronism with the light wave. If the
counter wave of modulation is present which in a number of devices
of such type takes place, then its action is little, and in the
first approximation it can be disregarded.

Above, in examining the modulation ?f light properties of the
medium were described by general tensor % which in the transition
to the definite type cof crystal is specified. Let us clarify the
possibility of light modulation with the help of crystals of dihydro-
phosphates of potassium and ammonium (KDP and ADP), which in an
optical respect are uniaxial. According to [194] the linear electro-
optical effect 1is greatly expressed in these crystals only when the
field 1is applied along the optical axis. Consequently, with realiza-
tion of modulators of light on crystals KDP and ADP, the modulating
electrical field should be directed along the optical axis (z axis).

Let us now consider the question on the polarization of light
waves. Wave vector k, is several orders less than vector k. Therefore,
for fulfillment of conditions of synchronism of the type (5.12), wave
vectors of the initial light wave and lateral components appearing

in the medium should be close in the direction and in magnitude. On
the one hand, even for a modulating frequency of 10 G-Hz the distinc-
tion of them in magnitude should appear only in the fourth sign.
On tne other hand, indices of refraction for ordinary and extra-

ordinary waves already differ in the second sign. Consequently, all
spectral components must na-'e one polarization — be elther ordinary
or extraordinary. A light wave with an arbitrary direction of propa-
gation and arbitrary polarization due to double refraction breaks up
into an ordinary and extraordinary wave. In virtue of the consider-
able distinction of indices of refraction for these waves, the inter-
action between them is impossible. Each of the waves with propaga-
tion 1is subjected, in general, to modulation.

The modulation of light is directly connected with properties
of symmetry of the crystals KDP and ADP. These properties of
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symmetry are such that in the expression for the nonlinear part of
polarization:

Py=ynEE, (5.21)

all subscripts i,i and & must be different (see Chapter I, § 7).
Inasmuch as along the optical axis (z axls) there is directed t".
field E,, the light wzve should have components on other axes of the
crystal (let us des’gnate them z' and y’). Only under this condition
does polarization at side frequencies appear, and it is always
located in the plane x'y'. Waves of side frequencies appear only in
the case when the vector of nonlinear polarization has a component

on the electrical field of side frequency.

Let us consider as an example the propagation of a ray of light
perpendicular to the optical axis (Fig. 5.1). For the most effective
modulation, in this case it is necessary that vector E;, be oriented
in one of the directions [1, 1.0], [1, -1.0). Only in these cases
does the nonlinear part of polarization, determined by relationship
[5.21], coincide in the direction with vector E,, Coefficient B,
determined by the relation (5.8), is equal in the examined case to

A
B=o , (5.22)

A
& cos kkyy

where Ae - change in dielectric constant of the c¢rystal under the
action of the fleld En—Ae=4my kL%  Let us find this value. Prior

to superposition of the field, section z=0 of the ellipsoid of
indices of refraction was circular ard the dielectric constant

equaled ¢, After superposition of the field EY along -he z axls the
circunference of the section is turned into an ellipse, the principal
axes of which pass at an angle of 45° to axes z' and y' of the crystal.
According to [194] corresponding values e along the principal axes

are determined by equalities:

+roEn, (5.23)

where rgy — electro-optical coefficient, which consists of, for

141




’ pnﬁ

plm

E

{4

Fig. 5.1. Concerning the question of
direction P — nonlinear part of polariza-
tion appearing from € and E=x, and

"feeding" wave of side frequencies:
. ¢,z — axes of the crystal (scale is not
maintained).

example, for KDP 847.107" cm/V [169]. Hence, in virtue of the small-
ness of modulation factors

.31":30(1'*“%":52:); 5:-—-30(1—'50"6352:) (5.24)
and
As =_£¢2,I'QE?". (5?5)
In case of synchronism the modulation factor of phase mg is
equal to

R T
m;:Bx:uSnﬂii—ﬂf-, (5.25)
where it 1s considered that for KDP crystals with synchronism

A
coskkm=i%- (see [1661). From formula (5.26) it follows that when

J\.=7000°A, o 1,5 and EY =50 V/cm the modulation factor of phase my, =1

is attained at distance x=80 cm.
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§ 4. Modulation of Light in Optically
Isotropic Crystals’

Let us now turn to examination of the process of modulation of
a light wave with passage through nonlinear crystals of cubic
structure (classes T and T,,. It is obvious that such c;ystals are,
in absence of a modulating field, isotropic. Therefore, the process
of the propagation of light through a crystal, to which a modulating
field is applied, is described in a parametric approximation by the
equation:?

I #E m:ywﬂ__4nAE_gg_ (5.27)

'Interest toward isotropic crystals as light modulators is
explained by the following. In thz use of anisotropic crystals for
phase light modulation with rotation of the plane of polarization,
which after passage by the light wave of a Nicol prism is turned into
amplitude modulation, the ray of light should be directed along the
optical axis. In the same direction there should be applied a
modulating electrical fileld, which creates considerable design diffi-
culties. Furthermore, the ray of light should be parallel to the
optical axis, which puts limitation on the divergence of the light
ray.

The difficulties indicated above do not exist in the case of
the use of isotropic crystals as modulators of light. Here there
are no such serious limitations on the parallelism of the ray of
light. In [186] there is discussion about the satisfactory modulation
of light with divergence of the ray up to 20°. 1I= isotropic crystals
the modulating field can be applied in a direction perpendicular to
the direction of the propagation of light. Here it is possible to
carry out modulation immediacely by two signals applied in mutually-
perpendicular directions [224]. Regarding, however, the magnitude
of the electro-ontical coefficient, then, for example, fer ZnS it is
only U times less than that for KDP, and consists of according to
data given in [224] and [186], rye2-10-* cm/V.

2In the given equation instead of rot rot E there is recorded
-y, This is connected with the fact that at the force standing
in the right side of the equation and leading to a change in E
"working" is the component lying in a plane perpendicular to vector k
Therefore, for resolution of the problem, it would have been possible
to multiply the fundamental equation vectorly by -(kdk...)l The result
of the action of this operator on rot rot E is ~ y2E+ small terms,
and the order of their smallness is higher than that which is con-
sidered with subsequent discussion. Thereby the aforementioned re-
placement is justified, since multiplication by —ikdk..J] will be
performed further; however, the reader wili lead up to this operation
by more graphic path.
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where the linear part of polarization P'ls connected with field E
A
through the scalar functional operator x:

p* = En(t')E (r.t—1)d¢, (5.28)

and forced anisotropy is determined only the modulating field En(r,?).
Subsequently, we consider that the right side of (5.27) is small and
has the oracr u.

With the propagation of light in an anisotropic nonlinear
crystal the modulating field practically cannot change polarization
of the natural wave. This occurs because the directions of natural
polarizations with the assigned direction of the beam vector are
determined by optical properties of the crystal directly connected
with its spatial symmetry. In an isotropic crystal in the absence
of a modulating fleld, all directions of polarization are natural,
the case of degeneration takes place. Superposition of the modulating
field on the crystal removes this degeneration — the light wave with
propagation over such crystal changes, in general, its polarization.

Thus, the field of the light wave is described by the expression:
E = E, (ur, p) ™'~ pU (r, p) ™, ' (5.29)
where in contrast to the case of the anisotropic crys’al the amplitude

Eo(pr,pf) is a vector slowly variable in magnitude and direction but
remaining perpendicular to the vector k

(kEO)=Oo (5030)

‘The term pU(rpé) considers the inaccuracy and is small at all values
of coordinates and time. Let us derive the equation describing the
behavior of amplitude Eo(pr, pi).

Proceeding just as in the second chapter in the derivation of

truncated equations for the amplitdue of the wave in an anisotropic
nonlinear dielectric, we wlill write out the approximate expression
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for P, It has the form:

PY = x(m)Eo-ip% . i;'#]e"'"'-(- px(co)U} et . (5. 31)

The second derivative of this vector with respect to time, which

enters into equation (5.27), with the same degree of accuracy is
equal to

= —a'P 21]1&»46—5'#- el n (5.32)

Expression %%? is approximately equal to

BE — Ik . 0B, — &
—-;:[——Q)‘E°c +2‘|“‘)'ch lll‘_wule.lf. (5.33)
and expression ¢*E

VE=[~2ip (kv) Eae™™ — £ Eoe™™ + v U] €. (5.34)
Substituting all these expressions into (5.27) and considering that

fE = %[1+4nx(m)l, (5.35)

we have:

U+ (U 400 U = 2 (k) By + [ (1 4 o) &

2n0 dx ] 9E, |, 2miwt N —iks
+ c* dm]_6t+ c? 'X'E'“E"}e. . (5.36)

The linear differential operator, which acts on the vector function 1)
in the left side of (5.36) has the eigenvalue %k and eigenvector —

any vector perpendicular to k. Therefore, the right side (5.36) is
resonance for the differential operator. For limitedness U at all
values of coordinates and time (requirement of cmallness of the
correction term), it 1s necessary that the projection of the vector
standing on the right on a plane perpendicular to k be equal to
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zero., This condition is given by the equation describing the
behavior E,. Before writing it out we will counsider that according
to (5.35)

de _ k1 -

ko= —,Trp-—-?—m‘(l+4nx) (5.37)
Replacing the coefficient with a time derivative in the right side
of (5.36), in accordance with (5.37) we have:

(oW B+ L o . 200t [y Y b E By (5.38)
rp (3

The right side in (5.38) is a projection of vector %EmEo on a plane
perpendicular to k, and kK, is a unit vector in the direction of k.
The truncated equation (5.38) is an equation describing in a para-
metric approximation the process of propagation of a light wave in
an isotropic nonlinear medium.

The direction of the change in amplitude E, is determined, in

general, by conditions of the problem. If, as in § 2, the modulating

field has the form of a plane traveling or standing wave, then the
direction of the change in E, coincides with wave vector k, of the
modulating wave. Designating the coordinate in the direction of
this wave vector by &, we have Ey=Ei(&?) and

@ 1
coskykn 5+ D20 = 4 22 [y, ey, B (5.39)

A
The vector operator [koU%xEm"J], which acts on vector B, in the right

side (5.39), turns it in a plane perpendicular to Ky at a definite
angle. This leads, in general, to a change in the plane of polari-
zation of the light wave with its propagation. There are, however,
two directions of polarization — eigenvectors of the operator
bg[kofE;“Ji, which are not changed in direction during propagotion.

These directions are determined by properties of symmetry of crystals

and by the modulating field. Let us assume that, for example, the
modulating field is directed along one of the edges of a cubilc
crystal (z axis). Then, as follows from the structure of tensor z.
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for cubic crystals (Chapter I)

U R —

P,=aE_E,; Py=aF,E,, (5.40)

where a=y, .. and the x and y axes are directed along two other

= Ayoxa o
edges of the crystal. Let us consider two cases when the light wave

propagates along the z axis and when it propagates in the plane xy.

If the wave propagates along the z axis, then in the xy plane
there exist two natural directions of pclarization e;={1,1,0] and
A A
e;=(1,—1,0]. Along these directions e, [ko[koxEme,]] and ,e,n[kolkoxﬁ,,,e.].

With entry of a light wave with any polarization into such a crystal
along the z axis, the wave is split into two components with polari-
zations along directions ¢ and ¢, Each of these waves propagates
independently of the other with its own phase speed. If E, is
directed along the x axis, then amplitudes of waves E, and E; are

equal so that :El|=‘|E,|=%. If the modulating field has the form of

a traveling wave with a longltudinal component E,, and the condition

. of synchronism (5.11) is fulfilled, then waves E, and E, undergo phase
:‘ modulation according to the law studied in § 2.
: @1 =@o— Bzcos (wnt —k,2);
- 1= Qo+ Bzcos (0, ! —kg2) (5.42)
;‘j For each of the waves we obtain the final expression:
E = %cos {0t — kz 4 o — Bz cos (0nt — £, 2));
) (5.42)

Ey= %cos (@f — k2 + @o + Bz cos (0t — &, 2)).

In a certain fixed section z, there occurs the addition of two mutually
perpendicular oscillations with equal amplitudes. The form of the
closed curve described by the end of vector E depends on the differ-
ence of phases A¢ of these oscillations, which, as one can see from
(5.42), is equal to:

] A = 2B2¢0s (Onf —ko2y). (5.43)
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At a certain instant ¢ the difference of the phases between oscilla-
tions 15 equal to Ag. Let us see what will occur in section 2z, in
the interval of time A!¢ such that coswe,¢ after this time interval
almost does not change and cosof éuoceeds in accomplishing many
oscilllations. The given assumption with respect to the time interval
A¢ means that the difference in phases Ag in this interval can be
considered constant. Quantity A¢ determines the form of the ellipse,
which is described by the end of vector E. Principal axes of the
elllipse coincide with axes = and y. In the case Ap=0 the ellipse
degenerates into a straight line. When AQ::%; the ellipse is turned
into a circumference. The eccentricity of the ellipse changes with

a change in Ag, 1.e., with a change in the modulating field. Setting
on the path of light the Nicol prism, the amplitude modulation of the
light wave can be obtained. If in the initial light wave vector E

is oriented not along the x axls but in a certain arbitrary direction,
then amplitudes of waves on which the initial wave disintegrates
prove to be different. With the help of the Nicol prism here it also
is possible to carry out amplitude modulation; however, at a great
difference in amplitudes of waves the modulation will be less
effective, since in this case the eccentricity of the ellipse changes
in small limits.

If the modulating field E, is sp: 11y uniform, then for the
modulation of the phases we obtain the expression:

=0 F i OmZ o, OmZ
9 2=9F B ™ sin 20 cos(co,,,t 2%). (5.40)
and the difference in phases in this case
c 1 .. Om2 o
A =: & me.. — m .L!
¢ = 2B T sin 20 cos(co,,,t Zor z)- (5.45)

Let us now examine the second case when the wave vector k is
located in the zy plane. In this case the light wave with amplitude
Ey breaks up into a wave with polarization along the z axis and a
wave with vector of polarization located in the xy plane. The first
of these waves in accordance with (5.40) 15 not modulated with passage
through the crystal. The degree of modulation of the second wave
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depends on the directicrn of the propagation of light. If the light
wave propagates along the z or y axes, then modulation is absent.
If, however, it propagates in directions [1, 1.0}, [1, -1.0] or
opposite directions, then the degree of modulation is maximum.

If the field of modulation has the form of a traveling wave,
and the condition of synchronism of it is carried out with the light
wave propagating in direction [1, 1.0], the process of modulation is
described by expressions:

: =9 - .
2= Qs+ BEcos (0, f — £,%), (5.46)

where § — coordinate in direction k,, and the difference in phases
A =Btcos(w, ! —4,f). (5.47)

For the case of a uniform modulating field

° . 1 o, Om 3 _22_ H
Ag=B ™ sm—-—z% cos (m,,t ore ) (5.48)

In conclusion one should note that the seccnd method of amplitude
modulation, at which the ray of light is perpendicular to the medu-
lating field, at equal intensities of this field and at equal ampli-
tudes of components of waves is twice less effective than the method
at which the light ray coincides in direction with the field strength
of modulation. However, design advantages of the second method are
qulte great, and in a number of systems c¢f modulation its use is
preferable (see [195]).

§ 5. Coaversion of the Form of Modulation with
Parametric Amplification
of Traveling Waves

As was already indicated in the introduction to this chapter,
an important class of problems on modulated waves in nonlinear media
are problems on the transformation of the forin of modulation of the
wave. Actually, in a highly dispersive medium there can be created
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conditions at which even the coherent generating of the second
harmonic is impossible. A harmonic wave of frequency w, in such a
medium will propagate in exactly the same way as in the linear case
(the dlspersion already in frequency band a, 2w, is quite great).
Another situation takes place if the wave is modulated; the presence
of nonlinearity can lead to stored distortions of the form of modu-
lation of the wave, although the wave itself remains here quasi-
monochromatic. It is easy to understand the latter if one were to
turn to spectral concepts. The modulated wave occupies a finlte
spectral interval Aw; when %f«gl the interaction of different compo-~-

nents lying in the band Ae can lead to the appearance of stored
effects, inacmuch as dispersion in the band Aw 1s expressed weakly.
One of the examples of the conversion of modulation in a highly
dispersive medium — distortion of amplitude modulation in a nonlinear
medium — is examined by Ostrovskiy [173]. An interesting result of
the calculation conducted by him is the conclusion concerning the

possibility of the appearance of Riemannian waves of enveloping in
a high. ' dispersive medium.

Below we will examine another problem on the conversion of
modulation: we will analyze the process of conversion of modulation
with the interaction of two waves with multiple frequenciles (o,=w;
ws=20) in a quadratic medium. We will consider that the field
strength of the wave at frequency 2e considerably exceeds the field
strength at frequency w; therefore, the problem stated can be solved
in a parametric approximation (see § 4 of Chapter II). Thus, let
us assume that the polarizability of the medium has the form:

x(2,,6) = 2(£) + MY expi [20f —hez] . (5.49)
The field at frequency w will be written in the form
E =&, A(ut, ur)exp i [of —Kkr] . (5.50)
We will consider, as always, that

k= 2k +A; 18l jg~p.
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Calculating with the help of (5.49) and (5.50) polarization of the
medium at frequency w (see formula (2.103a)), substituting the
obtained expressions in the Maxwell equations and using the standaord
method discussed in Chapter II, we arrive at the truncated equations —
equations of the parametric smplifier of the traveling wave:

A A
€os Ky - oSS, zoﬂ.»{- ;l- 94 e aeo A+ inwie M ge=0 (5.51a)
. P
A OA* t »
cosk,s,coss,zo-5;+ :a“;‘ +eoac°4——mm e“'A .0, (5.51b)

Here n=%eoﬁ4(m)eo [compare (2.78)1].

From (5.51) it is clear that the behavior of amplitude 4 is
described by a system of two truncated equations (complex) in partial
derivatives, which are not split and which must be solved jointly.
Here there formally occurs an interaction of waves with frequencies
+w and -w. Actually this means that the behavior of waves with
various phases with respect to the phase of the wave, change of
parameter (5.49) differently (see also § 4 of Chapter IV).

To solve the system of equations (5.51), let us introduce new
variables:

=

Es

A A
(2 -t tugp cos K,y §,.€Os S, 2p);

AT K
(2—1tv;pcos Ky §; COS Sy Zo). (5.52)

SN

Equations (5.51) then obtain the form:
n K dA ’ ’
cos K, S, coss; Z, d—g-—i- eoa €A+ inate M B go g

cosky 5, COSS, 2 Zo + eotie, A* — ina?e? @EH 40, (5.53)

where A’=A,, and ¢’=A, % Equations (5.53) are ordinary differential
equations with respect to the argument E;l, and argument E;2 enters

as a parameter. They can be solved in general form; however, this
solution is very bulky, and we will analyze the equations for the
case A =0, Then we have:
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A §
A=&@NW"ﬁ%Eﬁl&'f
: cos k; 8,08 83 %

A
+ MG exp| — BT g |, (5.54)

* cosky 83605212

where on arbitrary complex functions A,(&) and A:(§) by equatlons
(5.53) there are imposed limitations of the form:

A=iAl; A=—i4. (5.55)

This means that

Ayt =14 5B, (§); A2(§2)=(I'T'i)B3(§g), (5.56)

where B,(%) and By(%) — arbitrary real functions. Finally for 4 we
have:

4 i
A= By (1 + Dexp| — 220 g |y
. | coskysicos 820
T A 1
+BI(§2)'(l—i)exp _Mgl

A
coskysycosszo |} -

(5.57)

.

Using (5.57), one can determine the form of modulation in the arbi-
trary section z according to the assigned modulation at the input
the assignment of boundary conditions permifts uniquely determining
functions By(§s), Ba(§:2).

In the investigation of distortions of modulated signals in
nonlinear media, it is frequently more convenient to use equatilons
for real amplitudes and phases. The equivalent (5.52) equations for
the real amplitude 4 and phase ¢ of the modulated signal in a
degenerated parametric amplifier of a traveling wave have the form
[compare (4.69)-(4.70)]:

%+0A.A'sin2?+a.4=o; (5.58a)

%+A+a&c§s2¢=0. (5.580)
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Here designctions o, 8, and A, arv analogous to dasignations
accepted in Chapters III-IV.

[ U ——

Truncated equations (5.58) should be solved wilth boundary
s conditions set at z=0. It is necessary to consideir that in new
variables §, &2 the point z=0 corresponds to §,=—& [see (5.52)].
Therefore, if in variables ¢ z bouridary conditions have the form:

- 2=0; AQ,0)=AW; 20,0=q), (5.59)

that in variables §, § we have:

- G=—k A=A(—%); 9= Go(—5). (5.60)

Using (5.58) and (5.60), one can determine, for example, the law of
the change in phase of the amplified wave (we will 1limit ourselves
for simplicity, as earlier, to the cese A=0 ). Inasmuch as the phase
equation can be integrated independently c¢f the amplitude, by
conducting integration and passing to variables ¢ 2z we obtain:

e e ———— Bt o ™

L]

A,z

. - — - g

e(t,2)= arctg[ e Crptorkysyco €%,
{ X igeo [t —— Az - ) 5.61)
: v.’pcoskx.‘cossxzo

From (5.61) it is clear that with a growth in z the index of the

! phase modulation in the degenerated amplifier of the traveling wave
decreases.

Using the result of (5.61), it is possible to integrate the
amplitude equat.on.

The modulation of the amplitude when 2.0 i1s determined not

only by the amplitude, but also by phase modulation of the input
signal.
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We will not discuss more specifically the examined example; itsg
detarled analysis is given by us in [56]. Here we will underline
only that the change in variables (5.52) is very effective iIn the
theory of modulated waves in nonlinear dispersive meula, inasmuch as
it allows reducing partial differential equations to equations in
common derivatives. In [56] this procedure was used for investigating
statistical phenomena in the parametric amplifier of a traveling wave.

The same approach can appear, apparently, expedient in the in-
vestigation of problems connected with the generation of harmeonics by
modulated waves, with the investigation of statistical phenomena with
nonlinear wave interactions and so on.

In this chapter we were limited to the examination of modulated
waves in a quadratic medium.

Similar problems can be of considerable interest for the cubic
medium; with this here certain effects connected with the presence
of nonlinear corrections to the dielectric constant are possible,.
As an example let us indicate that in the cubic medium there can
take place the effect of cross-modulation — an amplitude-modulated
wave in a cubic medium modulates the phase of a weak wave, etc. (see,
for example, § U4 of Chapter III, where there is introduced the
concept of "nonlinear 4=tuning"). Let us also note that effects
connected with the changs in constant polarization of the medium in
the field of the modulated 'rave were examined recently in the work
of Askar'yan [203].
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(U) The nonlinear effects examined in this book are effects of
the first order with respect to small parameters, parameter of
anharmonicity and parameter characterizing the ratio of the

shift of the charged particle to the wavelength, The rapid pro-
gress in laser technology at present provides the obtaining of
such electromagnetic field strengths at which effects of the
second order can appear., DNonlinear scattering is an interesting
effect of the second order. In further development the theory
of waves in a nonlinear medium, discussed in Chapter 2 is needed,
llers the primary interest is in tThe propagation of it on light
beams of finite aperature, converging beems etc, An account of
the finite width of the spectrum of interacting waves is also
very important (discussed in Chapter 6), 1t should be noted
that in a number of cases the real two-dimensional problem is
reauced to an equivalent one-dimensional problem by an appropriate
selection of the "frequency difference" vector (Chapters 2,3,and
6). It should also be noted that the forced combination (Raman)
scattering is not, of course, the only example of nonlinear inter-
action, where part of the energy of interacting electromagnetic
vaves gives rise to oscillations of {he medium no% possessing an
electrical dipole moment., In a number of problems on nonlinear

effects in crystals, acoustic oscillations ("forced Rayleigh
scatiering ) should be considered,
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